Suppr超能文献

计算免疫荧光分布的中心位置:对数数据转换并非总是合适的。

Computing the central location of immunofluorescence distributions: logarithmic data transformations are not always appropriate.

作者信息

Coder D M, Redelman D, Vogt R F

机构信息

Department of Immunology, University of Washington, Seattle 98195.

出版信息

Cytometry. 1994 Jun 15;18(2):75-8. doi: 10.1002/cyto.990180204.

Abstract

The idea of the "average" intensity of immunofluorescence data is often poorly defined, with such terms as average, mean, and peak used interchangeably. In addition, the common use of logarithmic amplifiers with immunofluorescence data further complicates the problem. Log amplifiers permit the display of a wider range of fluorescence intensities. At the same time, they effect a log transformation of the data. This transformation decreases the variance resulting in narrower fluorescence distributions, which are assumed to approximate normal distributions. When the log transform is used, the distribution mean is the geometric mean of the untransformed data, which is computed simply as the mean of the channel values. This mean value serves as a simple indicator of the population center. Despite the prevalence of log transformations in flow cytometry, this transformation may not yield normally distributed immunofluorescence data, whereas the square root or other fractional power transformations can yield normal distributions.

摘要

免疫荧光数据“平均”强度的概念通常定义不明确,“平均”“均值”和“峰值”等术语常被交替使用。此外,免疫荧光数据常用对数放大器进一步使问题复杂化。对数放大器允许显示更宽范围的荧光强度。同时,它们对数据进行对数变换。这种变换会减小方差,导致荧光分布变窄,假定其近似正态分布。当使用对数变换时,分布均值是未变换数据的几何均值,简单计算为通道值的均值。这个均值用作群体中心的一个简单指标。尽管在流式细胞术中对数变换很普遍,但这种变换可能不会产生正态分布的免疫荧光数据,而平方根或其他分数幂变换可以产生正态分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验