Suppr超能文献

流式细胞术直方图:变换、分辨率与显示。

Flow cytometry histograms: transformations, resolution, and display.

作者信息

Novo David, Wood James

机构信息

De Novo Software, 3250 Wilshire Blvd. Suite 803, Los Angeles, California 90010, USA.

出版信息

Cytometry A. 2008 Aug;73(8):685-92. doi: 10.1002/cyto.a.20592.

Abstract

Flow cytometry data analysis routinely includes the use of one- or two-parameter histograms to visualize the data. These histograms have traditionally been plotted with either a linear or logarithmic scale. However, the recent trend of performing the logarithmic conversion in software has made apparent some limitations of the traditional visual presentation of logarithmic data. This review discusses the mathematics of presenting data on a histogram and emphasizes the difference between scaling and binning. The review introduces the concept of an effective resolution to describe how the bin width changes in a variable bin-width histogram. The change in effective resolution is used to explain the commonly observed valley and picket fencing artifacts. These result from the effective resolution of the display histogram being too high for the data being presented. Recently, several different binning transformations have been described that are becoming more popular because they allow one to view a large dynamic range of data on a single plot, while allowing the display of negative data values. While each of the transforms is based upon different equations, they all exhibit very similar properties. All of the transforms bin the data logarithmically at high channel values and linearly at low channel values. The linear scaling of the lower channels serves to limit the effective resolution of the histogram, thus minimizing the valley and picket fencing artifacts. The newer transformations are not without their own limitations and recommendations for the appropriate manner of presenting flow cytometry data using these newer transformations are discussed.

摘要

流式细胞术数据分析通常包括使用单参数或双参数直方图来可视化数据。传统上,这些直方图采用线性或对数刻度绘制。然而,最近在软件中进行对数转换的趋势凸显了传统对数数据可视化呈现方式的一些局限性。本综述讨论了在直方图上呈现数据的数学原理,并强调了缩放和分箱之间的区别。该综述引入了有效分辨率的概念,以描述可变箱宽直方图中箱宽是如何变化的。有效分辨率的变化被用来解释常见的谷值和栅栏状伪像。这些是由于显示直方图的有效分辨率对于所呈现的数据过高所致。最近,已经描述了几种不同的分箱变换,它们正变得越来越流行,因为它们允许在单个图上查看大动态范围的数据,同时允许显示负数据值。虽然每种变换都基于不同的方程,但它们都表现出非常相似的特性。所有变换在高通道值处对数据进行对数分箱,在低通道值处进行线性分箱。较低通道的线性缩放用于限制直方图的有效分辨率,从而最小化谷值和栅栏状伪像。较新的变换并非没有自身的局限性,本文还讨论了使用这些较新变换呈现流式细胞术数据的适当方式的建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验