Spuhler P, Anantharamaiah G M, Segrest J P, Seelig J
Department of Biophysics, University of Basel, Switzerland.
J Biol Chem. 1994 Sep 30;269(39):23904-10.
Amphiphatic alpha-helices are the lipid-binding motif in many apolipoproteins. Two model peptides, namely Asp-Trp-Leu-Lys-Ala-Phe-Tyr-Asp-Lys-Val-Ala-Glu-Lys-Leu-Lys-Glu-Ala-Phe (18A) and Lys-Trp-Leu-Asp-Ala-Phe-Tyr-Lys-Asp-Val-Ala-Lys-Glu-Leu-Glu-Lys-Ala- Phe (18R), have been synthesized previously to mimic the structural and functional properties of apolipoprotein A-1. Here a quantitative thermodynamic analysis of the binding process of 18A and 18R to neutral and negatively charged lipid membranes is provided. Peptide 18A has a higher lipid affinity than 18R, and both peptides bind better to mixed 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphocholine-1- palmitoyl-2-oleoyl-3-sn-glycero-phosphoglycerol (POPC/POPG) bilayers than to pure POPC bilayers. At lipid-to-peptide ratios > 100, the binding of 18A and 18R to phospholipid bilayers can be described by an apparent surface partition equilibrium with binding constants in the range of 40-900 M-1. At high peptide concentrations, the membrane affinity of 18A and 18R increases dramatically. NMR studies provide evidence that peptide-peptide interactions make additional contributions to the binding energy. A cooperative binding model is developed to describe the binding process over the whole concentration range. The cooperativity parameter sigma is identical for 18A and 18R yielding a peptide-peptide interaction energy of about -2.4 kcal/mol. The free energy of membrane insertion is about -6.5 kcal/mol for 18A and -5.5 kcal/mol for 18R. The binding reaction is driven by the hydrophobic surface energy which is partially balanced by the loss in translational and rotational degrees of freedom. A molecular analysis of the free energy of binding predicts a 40-60% insertion of the peptides into the hydrophobic membrane environment. Deuterium and phosphorus solid state NMR were used to monitor the influence of 18A and 18R on the long range and short range order of the phospholipids. The spectra are characteristic of fluid-like lipid bilayers and provide no evidence for the formation of discoidal particles. However, both peptides change the conformation of the phosphocholine dipoles, moving the N+ end of the latter toward the water phase. The rotation of the -P-N+ dipoles is due to the interaction of the phospholipids with the positive charges on 18A and 18R, with 18A being more effective than 18R. For 18R the NMR data predict a pK shift and a partial charge neutralization of the carboxylate groups located at the edge of the polar/nonpolar interface.
两亲性α-螺旋是许多载脂蛋白中的脂质结合基序。之前已合成了两种模型肽,即天冬氨酸-色氨酸-亮氨酸-赖氨酸-丙氨酸-苯丙氨酸-酪氨酸-天冬氨酸-赖氨酸-缬氨酸-丙氨酸-谷氨酸-赖氨酸-亮氨酸-赖氨酸-谷氨酸-丙氨酸-苯丙氨酸(18A)和赖氨酸-色氨酸-亮氨酸-天冬氨酸-丙氨酸-苯丙氨酸-酪氨酸-赖氨酸-天冬氨酸-缬氨酸-丙氨酸-赖氨酸-谷氨酸-亮氨酸-谷氨酸-赖氨酸-丙氨酸-苯丙氨酸(18R),以模拟载脂蛋白A-1的结构和功能特性。本文提供了对18A和18R与中性和带负电荷脂质膜结合过程的定量热力学分析。肽18A比18R具有更高的脂质亲和力,并且两种肽与1-棕榈酰-2-油酰-3- sn -甘油磷酸胆碱-1-棕榈酰-2-油酰-3- sn -甘油磷酸甘油(POPC/POPG)混合双层膜的结合优于与纯POPC双层膜的结合。在脂质与肽的比例>100时,18A和18R与磷脂双层膜的结合可以用表观表面分配平衡来描述,结合常数在40 - 900 M-1范围内。在高肽浓度下,18A和18R的膜亲和力显著增加。核磁共振研究提供了证据表明肽-肽相互作用对结合能有额外贡献。开发了一个协同结合模型来描述整个浓度范围内的结合过程。18A和18R的协同参数σ相同,产生的肽-肽相互作用能约为-2.4千卡/摩尔。18A的膜插入自由能约为-6.5千卡/摩尔,18R的约为-5.5千卡/摩尔。结合反应由疏水表面能驱动,疏水表面能部分地被平动和转动自由度的损失所平衡。对结合自由能的分子分析预测肽有40 - 60%插入疏水膜环境中。氘和磷固态核磁共振被用于监测18A和18R对磷脂长程和短程有序性的影响。光谱是类流体脂质双层膜的特征,没有提供形成盘状颗粒的证据。然而,两种肽都改变了磷酸胆碱偶极子的构象,使后者的N+端向水相移动。-P-N+偶极子的转动是由于磷脂与18A和18R上正电荷的相互作用,18A比18R更有效。对于18R,核磁共振数据预测位于极性/非极性界面边缘的羧基的pK值发生偏移和部分电荷中和。