Suppr超能文献

Regulation of rat liver phenylalanine hydroxylase. II. Substrate binding and the role of activation in the control of enzymatic activity.

作者信息

Shiman R, Xia T, Hill M A, Gray D W

机构信息

Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033.

出版信息

J Biol Chem. 1994 Oct 7;269(40):24647-56.

PMID:7929136
Abstract

Activation by phenylalanine and reduction by the co-factor (6R)-tetrahydrobiopterin (BH4) are required for formation of active liver phenylalanine hydroxylase. This work describes effects of the activation and redox state on substrate and effector recognition of this enzyme, it establishes relationships among the pterin and phenylalanine binding sites on the different forms of the enzyme, and it provides a quantitative description of the enzyme's presumptive regulatory and catalytic sites. BH4, 7,8-dihydrobiopterin (BH2), 6-methyltetrahydropterin, and 5-deaza-6-methyltetrahydropterin were found to bind to unactivated phenylalanine hydroxylase with a stoichiometry of 1/enzyme subunit and with hyperbolic kinetics; all appear to compete for the same binding site on the enzyme, and all appear to bind in the proximity of, but not to, the enzyme's non-heme iron. In the transition from unactivated to activated enzyme, phenylalanine and pterin binding is modified, a new site for phenylalanine is formed, and the pterin site is replaced by a site of greatly decreased affinity for BH4 and BH2, one which does not appear to recognize the dihydroxypropyl side chain of BH4 and BH2. The pterin- and phenylalanine-binding sites on activated phenylalanine hydroxylase appear to be part of the enzyme's active site. Despite large effects on substrate binding, neither chelator binding ability nor solvent accessibility of the iron are affected by activation; activation appears to affect the nearby environment of the enzyme's iron but not the iron itself. Studies of oxidized and reduced phenylalanine hydroxylase indicate that the redox state is not a major determinant of pterin and phenylalanine association with enzyme.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验