Granger R, Whitson J, Larson J, Lynch G
Center for the Neurobiology of Learning and Memory, University of California, Irvine 92717.
Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):10104-8. doi: 10.1073/pnas.91.21.10104.
A hypothesis commonly found in biological and computational studies of synaptic plasticity embodies a version of the 1949 postulate of Hebb that coactivity of pre- and postsynaptic elements results in increased efficacy of their synaptic contacts. This general proposal presaged the identification of the first and still only known long-lasting synaptic plasticity mechanism, long-term potentiation (LTP). Yet the detailed physiology of LTP induction and expression differs in many specifics from Hebb's rule. Incorporation of these physiological LTP constraints into a simple non-Hebbian network model enabled development of "sequence detectors" that respond preferentially to the sequences on which they were trained. The network was found to have unexpected capacity (e.g., 50 x 10(6) random sequences in a network of 10(5) cells), which scales linearly with network size, thereby addressing the question of memory capacity in brain circuitry of realistic size.
在突触可塑性的生物学和计算研究中常见的一种假设体现了1949年赫布提出的一种观点,即突触前和突触后元件的共同活动会导致它们突触连接的效能增加。这一总体提议预示了第一个也是目前唯一已知的持久突触可塑性机制——长时程增强(LTP)的发现。然而,LTP诱导和表达的详细生理学在许多细节上与赫布法则不同。将这些生理性LTP限制纳入一个简单的非赫布网络模型,使得能够开发出“序列检测器”,它们对所训练的序列有优先反应。研究发现该网络具有意想不到的容量(例如,在一个由10⁵个细胞组成的网络中能容纳50×10⁶个随机序列),且该容量与网络大小呈线性比例关系,从而解决了实际大小的脑回路中的记忆容量问题。