Suppr超能文献

蛋白质静电学:基于快速多重网格的牛顿算法求解完全非线性泊松-玻尔兹曼方程

Protein electrostatics: rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson-Boltzmann equation.

作者信息

Holst M, Kozack R E, Saied F, Subramaniam S

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign 61801.

出版信息

J Biomol Struct Dyn. 1994 Jun;11(6):1437-45. doi: 10.1080/07391102.1994.10508078.

Abstract

A new method for solving the full nonlinear Poisson-Boltzmann equation is outlined. This method is robust and efficient, and uses a combination of the multigrid and inexact Newton algorithms. The novelty of this approach lies in the appropriate combination of the two methods, neither of which by themselves are capable of solving the nonlinear problem accurately. Features of the Poisson-Boltzmann equation are fully exploited by each component of the hybrid algorithm to provide robustness and speed. The advantages inherent in this method increase with the size of the problem. The efficacy of the method is illustrated by calculations of the electrostatic potential around the enzyme Superoxide Dismutase. The CPU time required to solve the full nonlinear equation is less than half that needed for a conjugate gradient solution of the corresponding linearized Poisson-Boltzmann equation. The solutions reveal that the field around the active sites is significantly reduced as compared to that obtained by solving the corresponding linearized Poisson-Boltzmann equation. This new method for the nonlinear Poisson-Boltzmann equation will enable fast and accurate solutions of large protein electrostatics problems.

摘要

概述了一种求解完全非线性泊松-玻尔兹曼方程的新方法。该方法稳健且高效,采用了多重网格和不精确牛顿算法相结合的方式。这种方法的新颖之处在于两种方法的恰当结合,单独使用这两种方法都无法准确求解非线性问题。混合算法的每个组件都充分利用了泊松-玻尔兹曼方程的特性,以提供稳健性和速度。该方法固有的优势随着问题规模的增大而增加。通过计算超氧化物歧化酶周围的静电势来说明该方法的有效性。求解完全非线性方程所需的CPU时间不到求解相应线性化泊松-玻尔兹曼方程共轭梯度解所需时间的一半。结果表明,与求解相应线性化泊松-玻尔兹曼方程得到的结果相比,活性位点周围的电场显著降低。这种求解非线性泊松-玻尔兹曼方程的新方法将能够快速准确地解决大型蛋白质静电问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验