Suppr超能文献

The structure of Fis mutant Pro61Ala illustrates that the kink within the long alpha-helix is not due to the presence of the proline residue.

作者信息

Yuan H S, Wang S S, Yang W Z, Finkel S E, Johnson R C

机构信息

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China.

出版信息

J Biol Chem. 1994 Nov 18;269(46):28947-54. doi: 10.2210/pdb1fip/pdb.

Abstract

The influence of proline on bending of the alpha-helix was investigated by replacement of the proline residue located in the middle of the long alpha-helix of the Fis protein with alanine, serine, or leucine. Each of the three substitutions folded into a stable protein with the same or higher melting points than the wild-type, but only Pro61Ala was functionally active in stimulating Hin-mediated DNA inversion. Pro61Ala formed crystals that were isomorphous with the wild-type protein allowing the structure to be determined at 1.9-A resolution by x-ray diffraction methods. The structure of the Pro61Ala mutant is almost identical to the wild-type protein, consistent with its near wild-type activity. One of the alpha-helices, the B-helix, is kinked in the wild-type Fis protein by 20 degrees which was previously assumed to be caused solely by the presence of proline 61 in the center of the helix. However, the B-helix is still kinked by 16 degrees when proline 61 is replaced by alanine. Local peptide backbone movement around residue 57 adjusts the geometry of the helix to accommodate the new main chain hydrogen bond between the -CO group in Glu57 and the -NH group in Ala61. Thus, the kink of the alpha-helix in Pro61Ala does not require the presence of proline.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验