Maki R, Robinson M B, Dichter M A
David Mahoney Institute of Neurological Sciences, University of Pennsylvania, School of Medicine, Philadelphia.
J Neurosci. 1994 Nov;14(11 Pt 1):6754-62. doi: 10.1523/JNEUROSCI.14-11-06754.1994.
Sodium-dependent high-affinity uptake of glutamate is thought to play a major role in the maintenance of very low extracellular concentrations of excitatory amino acids (EAA), and may modulate the actions of released transmitter at G-protein-coupled receptors and extrasynaptic receptors that are activated over a longer distance and time course. We have examined the effects of the recently developed uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) on monosynaptically evoked excitatory postsynaptic currents (EPSCs) in very-low-density cultures of hippocampal neurons. L-Trans-PDC produced a decreased amplitude of both the non-NMDA and NMDA receptor-mediated components of monosynaptically evoked EPSCs. Examination of miniature EPSCs (mEPSCs) indicated that changes in the sensitivity of postsynaptic non-NMDA receptors did not underline the decrease in evoked EPSC amplitudes. The metabotropic receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) also depressed both components of the EPSC. The competitive metabotropic receptor antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) blocked the depression of EPSC amplitude induced by 1S,3R-ACPD and also blocked the effects of L-trans-PDC. Finally, low concentrations of L-glutamate (2 microM) mimicked the effects of L-trans-PDC on EPSC amplitude. From these results we conclude that the application of L-trans-PDC to cultured hippocampal neurons results in the activation of presynaptic metabotropic receptors, leading to a decrease in synaptic transmission. We propose that this effect is due to an increase in ambient glutamate concentrations following inhibition of glutamate uptake, resulting in presynaptic inhibition of excitatory synaptic transmission.
谷氨酸钠依赖性高亲和力摄取被认为在维持细胞外极低浓度的兴奋性氨基酸(EAA)中起主要作用,并且可能调节释放的递质在G蛋白偶联受体和突触外受体上的作用,这些受体在更长的距离和时间进程中被激活。我们研究了最近开发的摄取抑制剂L-反式吡咯烷-2,4-二羧酸(L-反式-PDC)对海马神经元极低密度培养中单突触诱发的兴奋性突触后电流(EPSC)的影响。L-反式-PDC使单突触诱发EPSC的非NMDA和NMDA受体介导成分的幅度均降低。微小EPSC(mEPSC)的检测表明,突触后非NMDA受体敏感性的变化并不是诱发EPSC幅度降低的原因。代谢型受体激动剂(1S,3R)-1-氨基环戊烷-1,3-二羧酸(1S,3R-ACPD)也抑制了EPSC的两个成分。竞争性代谢型受体拮抗剂(RS)-α-甲基-4-羧基苯基甘氨酸(MCPG)阻断了1S,3R-ACPD诱导的EPSC幅度降低,也阻断了L-反式-PDC的作用。最后,低浓度的L-谷氨酸(2 microM)模拟了L-反式-PDC对EPSC幅度的影响。从这些结果我们得出结论,将L-反式-PDC应用于培养的海马神经元会导致突触前代谢型受体的激活,从而导致突触传递减少。我们提出这种效应是由于谷氨酸摄取抑制后细胞外谷氨酸浓度增加,导致兴奋性突触传递的突触前抑制。