Liestøl K, Andersen P K, Andersen U
Statistical Research Unit, University of Copenhagen, Denmark.
Stat Med. 1994 Jun 30;13(12):1189-200. doi: 10.1002/sim.4780131202.
We consider feed-forward neural nets and their relation to regression models for survival data. We show how the back-propagation algorithm may be used to obtain maximum likelihood estimates in certain standard regression models for survival data, as well as in various generalizations of these. Examples concerning malignant melanoma and post-partum amenorrhoea during lactation are used as illustration. We conclude that although problems with the substantial number of parameters and their interpretation remain, the feed-forward neural network models are flexible extensions to the standard regression models and thereby candidates for use in prediction and exploratory analyses in larger data sets.
我们考虑前馈神经网络及其与生存数据回归模型的关系。我们展示了反向传播算法如何用于在某些生存数据的标准回归模型以及这些模型的各种推广中获得最大似然估计。以恶性黑色素瘤和哺乳期产后闭经的例子作为说明。我们得出结论,尽管存在大量参数及其解释方面的问题,但前馈神经网络模型是标准回归模型的灵活扩展,因此可作为在更大数据集进行预测和探索性分析的候选方法。