Suppr超能文献

用于识别中风的医院出院摘要的准确性。

Accuracy of hospital discharge abstracts for identifying stroke.

作者信息

Leibson C L, Naessens J M, Brown R D, Whisnant J P

机构信息

Department of Health Sciences Research, Mayo Clinic, Rochester, Minn. 55905.

出版信息

Stroke. 1994 Dec;25(12):2348-55. doi: 10.1161/01.str.25.12.2348.

Abstract

BACKGROUND AND PURPOSE

Much of the available data on stroke occurrence, service use, and cost of care originated with hospital discharge abstracts. This article uses the unique resources of the Rochester Epidemiology Project to estimate the sensitivity and positive predictive value of hospital discharge abstracts for incident stroke.

METHODS

The Rochester Stroke Registry was used to identify all confirmed first strokes (hospitalized and nonhospitalized) among Rochester residents for 1970, 1980, 1984, and 1989 (n = 364). The sensitivity of discharge abstracts was estimated by following these individuals for 12 months after stroke to determine the proportion assigned a discharge diagnosis of cerebrovascular disease (International Classification of Diseases [ICD] codes 430 through 438.9). The positive predictive value of discharge abstracts was assessed by identifying all hospitalizations of Rochester residents with an ICD code of 430-438.9 in 1970, 1980, and 1989 (n = 377). Events were categorized as incident stroke, recurrent stroke, stroke sequelae, or nonstroke after review of the complete community-based medical record by a neurologist.

RESULTS

Only 86% (n = 313) of all first-stroke patients in 1970, 1980, 1984, and 1989 were hospitalized. Of hospitalized patients, only 76% were assigned a principal discharge diagnosis code of 430-438.9. Fatal strokes and those occurring during a hospitalization were less likely to be identified. Among all hospitalizations of Rochester residents in 1970, 1980, and 1989, there were 377 with a principal diagnosis code of 430-438.9. Less than half (n = 177) were determined by the neurologist to be incident stroke; only 60% (n = 225) were either incident or recurrent stroke. Comparison of alternative approaches showed the validity of discharge abstracts was enhanced by increasing the number of diagnoses and excluding codes with poor positive predictive value.

CONCLUSIONS

This study provides previously unavailable estimates of the sensitivity of stroke-coded hospitalizations for a US community. A model for improving the sensitivity and positive predictive value of discharge abstracts is presented.

摘要

背景与目的

关于中风发生、医疗服务使用及护理成本的许多现有数据都源自医院出院摘要。本文利用罗切斯特流行病学项目的独特资源来估计医院出院摘要对新发中风的敏感性和阳性预测值。

方法

使用罗切斯特中风登记处来确定1970年、1980年、1984年和1989年罗切斯特居民中所有确诊的首次中风患者(包括住院和非住院患者)(n = 364)。出院摘要的敏感性通过在中风后对这些个体随访12个月来估计,以确定被分配脑血管疾病出院诊断的比例(国际疾病分类[ICD]编码430至438.9)。出院摘要的阳性预测值通过识别1970年、1980年和1989年ICD编码为430 - 438.9的罗切斯特居民的所有住院情况来评估(n = 377)。在由神经科医生查阅完整的基于社区的医疗记录后,将事件分类为新发中风、复发性中风、中风后遗症或非中风。

结果

在1970年、1980年、1984年和1989年所有首次中风患者中,只有占比86%(n = 313)的患者住院。在住院患者中,只有76%被分配了430 - 438.9的主要出院诊断编码。致命性中风以及在住院期间发生的中风更不容易被识别。在1970年、1980年和1989年罗切斯特居民的所有住院情况中,有377例主要诊断编码为430 - 438.9。神经科医生确定其中不到一半(n = 177)为新发中风;只有60%(n = 225)为新发或复发性中风。对其他方法的比较表明,通过增加诊断数量和排除阳性预测值低的编码,出院摘要的有效性得到了提高。

结论

本研究提供了美国一个社区中风编码住院情况敏感性的先前未有的估计值。提出了一个提高出院摘要敏感性和阳性预测值的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验