Suppr超能文献

挪威新发中风的识别:医院出院数据与基于人群的中风登记册的比较。

Identification of incident stroke in Norway: hospital discharge data compared with a population-based stroke register.

作者信息

Ellekjaer H, Holmen J, Krüger O, Terent A

机构信息

National Institute of Public Health, Community Medical Research Unit, Verdal,

出版信息

Stroke. 1999 Jan;30(1):56-60. doi: 10.1161/01.str.30.1.56.

Abstract

BACKGROUND AND PURPOSE

The validity of hospital discharge diagnoses is essential in improving stroke surveillance and estimating healthcare costs of stroke. The aim of this study was to assess sensitivity, positive predictive value, and accuracy of discharge diagnoses compared with a stroke register.

METHODS

A record linkage was made between a population-based stroke register and the discharge records of the hospital serving the population of the stroke register (n=70 000). The stroke register (including patients aged 15 and older and with no upper age limit), applied here as a "gold standard," was used to estimate sensitivity, positive predictive value, and accuracy of the discharge diagnoses classification. The length of stay in hospital by stroke patients was measured.

RESULTS

Identifying cerebrovascular diseases by hospital discharge diagnoses (International Classification of Diseases, 9th Revision [ICD-9], codes 430 to 438.9, first admission) lead to a substantial overestimation of stroke in the target population. Restricting the retrieval to acute stroke diagnoses (ICD-9 codes 430, 431, 434, and 436) gave an incidence estimate closer to the "true" incidence rate in the stroke register. Selecting ICD-9 codes 430 to 438 of cerebrovascular diseases gave the highest sensitivity (86%). The highest positive predictive value (68%) was achieved by selecting acute stroke diagnoses (ICD-9 codes 430, 431, 434, and 436), at the expense of a lower sensitivity (81%). Accuracy of ICD codes 430 to 438.9 (n=678) revealed the highest proportion of incident strokes identified by the acute stroke diagnoses (ICD-9 codes 430, 431, 434, and 436). Seventy-four percent of hospital discharge diagnoses classified as first-ever stroke kept the original diagnosis. Only 4.6% of the discharge diagnoses were classified as nonstroke diagnoses after validation. The estimation of length of stay in the hospital was improved by selection of acute stroke diagnoses from hospital discharge data (ICD-9 codes 430, 431, 434, and 436), which gave the same estimate of length of stay, a median of 8 days (2.5 percentile=0 and 97.5 percentile=56), compared with a median of 8 days (2.5 percentile=0 and 97.5 percentile=51) based on the stroke register.

CONCLUSIONS

Hospital discharge data may overestimate stroke incidence and underestimate the length of stay in the hospital, unless selection routines of hospital discharge diagnoses are restricted to acute stroke diagnoses (ICD-9 codes 430, 431, 434, and 436). If supplemented by a validation procedure, including estimates of sensitivity, positive predictive value, and accuracy, hospital discharge data may provide valid information on hospital-based stroke incidence and lead to better allocation of health resources. Distinguishing subtypes of stroke from hospital discharge diagnoses should not be performed unless coding practices are improved.

摘要

背景与目的

医院出院诊断的有效性对于改善卒中监测和估算卒中医疗费用至关重要。本研究旨在评估与卒中登记册相比,出院诊断的敏感性、阳性预测值和准确性。

方法

在基于人群的卒中登记册与为卒中登记册所涵盖人群服务的医院出院记录之间建立了记录链接(n = 70000)。卒中登记册(包括15岁及以上且无年龄上限的患者)在此用作“金标准”,用于估计出院诊断分类的敏感性、阳性预测值和准确性。对卒中患者的住院时间进行了测量。

结果

通过医院出院诊断(国际疾病分类第九版[ICD - 9],编码430至438.9,首次入院)识别脑血管疾病导致目标人群中卒中的估计值大幅高估。将检索范围限制在急性卒中诊断(ICD - 9编码430、431、434和436)时,发病率估计值更接近卒中登记册中的“真实”发病率。选择脑血管疾病的ICD - 9编码430至438时敏感性最高(86%)。选择急性卒中诊断(ICD - 9编码430、431、434和436)可实现最高的阳性预测值(68%),但敏感性较低(81%)。ICD编码430至438.9(n = 678)的准确性显示,急性卒中诊断(ICD - 9编码430、431、434和436)识别出的新发卒中比例最高。74%被分类为首次卒中的医院出院诊断保持了原诊断。经验证后,只有4.6%的出院诊断被分类为非卒中诊断。通过从医院出院数据中选择急性卒中诊断(ICD - 9编码430、431、434和436),住院时间的估计得到了改善,其给出的住院时间估计值相同,中位数为8天(第2.5百分位数 = 0,第97.5百分位数 = 56),而基于卒中登记册的中位数为8天(第2.5百分位数 = 0,第97.5百分位数 = 51)。

结论

除非将医院出院诊断的选择程序限制在急性卒中诊断(ICD - 9编码430、431、434和436),否则医院出院数据可能高估卒中发病率并低估住院时间。如果辅以包括敏感性、阳性预测值和准确性估计在内的验证程序,医院出院数据可能提供有关基于医院的卒中发病率的有效信息,并有助于更好地分配卫生资源。除非改进编码做法,否则不应从医院出院诊断中区分卒中亚型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验