Suppr超能文献

非高斯时间序列中周期性季节性的识别。

Identification of aperiodic seasonality in non-Gaussian time series.

作者信息

Normolle D P, Brown M B

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor 48109-2029.

出版信息

Biometrics. 1994 Sep;50(3):798-812.

PMID:7981399
Abstract

Time series that arise from biological experimentation can exhibit seasonality where the lengths of the seasons may vary. In addition, such time series may not be stationary with respect to either mean, variance, or autocorrelation, thus making the usual waveform-fitting techniques inappropriate. An agglomerative clustering algorithm for identifying seasons in such series is proposed, consisting of an initialization step, iterative steps where clusters are combined into larger clusters, and a stopping rule for the iteration. The clusters can be associated with seasons or phases, and biological cycles can be identified from the phases. Results of a simulation and an analysis of luteinizing hormone concentrations are presented.

摘要

源于生物学实验的时间序列可能呈现季节性,其中季节长度可能各不相同。此外,此类时间序列在均值、方差或自相关方面可能并非平稳,从而使得常用的波形拟合技术并不适用。本文提出了一种用于识别此类序列中季节的凝聚聚类算法,该算法包括一个初始化步骤、将聚类合并为更大聚类的迭代步骤以及迭代的停止规则。这些聚类可以与季节或阶段相关联,并且可以从这些阶段中识别出生物周期。文中给出了一项模拟结果以及对促黄体生成素浓度的分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验