Suppr超能文献

dpy-30基因编码秀丽隐杆线虫剂量补偿机制的一个必需组成部分。

The dpy-30 gene encodes an essential component of the Caenorhabditis elegans dosage compensation machinery.

作者信息

Hsu D R, Meyer B J

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley 94720.

出版信息

Genetics. 1994 Aug;137(4):999-1018. doi: 10.1093/genetics/137.4.999.

Abstract

The need to regulate X chromosome expression in Caenorhabditis elegans arises as a consequence of the primary sex-determining signal, the X/A ratio (the ratio of X chromosomes to sets of autosomes), which directs 1X@A animals to develop as males and 2X/2A animals to develop as hermaphrodites. C. elegans possesses a dosage compensation mechanism that equalizes X chromosome expression between the two sexes despite their disparity in X chromosome dosage. Previous genetic analysis led to the identification of four autosomal genes, dpy-21, dpy-26, dpy-27 and dpy-28, whose products are essential in XX animals for proper dosage compensation, but not for sex determination. We report the identification and characterization of dpy-30, an essential component of the dosage compensation machinery. Putative null mutations in dpy-30 disrupt dosage compensation and cause a severe maternal-effect, XX-specific lethality. Rare survivors of the dpy-30 lethality are dumpy and express their X-linked genes at higher than wild-type levels. These dpy-30 mutant phenotypes superficially resemble those caused by mutations in dpy-26, dpy-27 and dpy-28; however, detailed phenotypic analysis reveals important differences that distinguish dpy-30 from these genes. In contrast to the XX-specific lethality caused by mutations in the other dpy genes, the XX-specific lethality caused by dpy-30 mutations is completely penetrant and temperature sensitive. In addition, unlike the other genes, dpy-30 is required for the normal development of XO animals. Although dpy-30 mutations do not significantly affect the viability of XO animals, they do cause them to be developmentally delayed and to possess numerous morphological and behavioral abnormalities. Finally, dpy-30 mutations can dramatically influence the choice of sexual fate in animals with an ambiguous sexual identity, despite having no apparent effect on the sexual phenotype of otherwise wild-type animals. Paradoxically, depending on the genetic background, dpy-30 mutations cause either masculinization or feminization, thus revealing the complex regulatory relationship between the sex determination and dosage compensation processes. The novel phenotypes caused by dpy-30 mutations suggest that in addition to acting in the dosage compensation process, dpy-30 may play a more general role in the development of both XX and XO animals.

摘要

秀丽隐杆线虫中调节X染色体表达的需求源于主要的性别决定信号,即X/A比率(X染色体与常染色体组数的比率),该比率引导1X@A个体发育为雄性,2X/2A个体发育为雌雄同体。尽管两性之间X染色体剂量存在差异,但秀丽隐杆线虫拥有一种剂量补偿机制,可使X染色体表达达到平衡。先前的遗传分析鉴定出四个常染色体基因,即dpy-21、dpy-26、dpy-27和dpy-28,其产物对于XX个体进行适当的剂量补偿至关重要,但对性别决定并非必需。我们报告了dpy-30的鉴定和特征,它是剂量补偿机制的一个重要组成部分。dpy-30中的推定无效突变会破坏剂量补偿并导致严重的母体效应,即XX特异性致死。dpy-30致死的罕见幸存者体型短小,且其X连锁基因的表达水平高于野生型。这些dpy-30突变表型表面上类似于由dpy-26、dpy-27和dpy-28突变引起的表型;然而,详细的表型分析揭示了将dpy-30与这些基因区分开来的重要差异。与其他dpy基因突变导致的XX特异性致死不同,dpy-30突变导致的XX特异性致死是完全显性的且对温度敏感。此外,与其他基因不同,XO个体的正常发育需要dpy-30。虽然dpy-30突变不会显著影响XO个体的活力,但确实会导致它们发育延迟并具有许多形态和行为异常。最后,dpy-30突变可显著影响具有模糊性别身份的动物的性命运选择,尽管对其他野生型动物的性表型没有明显影响。矛盾的是,根据遗传背景,dpy-30突变会导致雄性化或雌性化,从而揭示了性别决定和剂量补偿过程之间复杂的调控关系。dpy-30突变引起的新表型表明,除了在剂量补偿过程中发挥作用外,dpy-30可能在XX和XO个体的发育中发挥更广泛的作用。

相似文献

2
Genes that implement the hermaphrodite mode of dosage compensation in Caenorhabditis elegans.
Genetics. 1989 Jan;121(1):57-76. doi: 10.1093/genetics/121.1.57.
5
DPY-26, a link between dosage compensation and meiotic chromosome segregation in the nematode.
Science. 1996 Dec 6;274(5293):1732-6. doi: 10.1126/science.274.5293.1732.
7
Sex-specific assembly of a dosage compensation complex on the nematode X chromosome.
Science. 1996 Dec 6;274(5293):1736-9. doi: 10.1126/science.274.5293.1736.
10
Genetic analysis of X-chromosome dosage compensation in Caenorhabditis elegans.
Genetics. 1987 Sep;117(1):25-41. doi: 10.1093/genetics/117.1.25.

引用本文的文献

1
The role of chromatin modulator DPY30 in glucose metabolism of colorectal cancer cells.
Transl Cancer Res. 2024 Aug 31;13(8):4205-4218. doi: 10.21037/tcr-24-366. Epub 2024 Aug 16.
2
XOL-1 regulates developmental timing by modulating the H3K9 landscape in C. elegans early embryos.
PLoS Genet. 2024 Aug 15;20(8):e1011238. doi: 10.1371/journal.pgen.1011238. eCollection 2024 Aug.
3
DPY30 Promotes Proliferation and Cell Cycle Progression of Colorectal Cancer Cells via Mediating H3K4 Trimethylation.
Int J Med Sci. 2023 May 11;20(7):901-917. doi: 10.7150/ijms.80073. eCollection 2023.
4
DPY30 acts as an ASH2L-specific stabilizer to stimulate the enzyme activity of MLL family methyltransferases on different substrates.
iScience. 2022 Aug 16;25(9):104948. doi: 10.1016/j.isci.2022.104948. eCollection 2022 Sep 16.
6
Mechanisms of sex determination and X-chromosome dosage compensation.
Genetics. 2022 Feb 4;220(2). doi: 10.1093/genetics/iyab197.
7
Beyond PKA: Evolutionary and structural insights that define a docking and dimerization domain superfamily.
J Biol Chem. 2021 Aug;297(2):100927. doi: 10.1016/j.jbc.2021.100927. Epub 2021 Jul 10.
8
The complex activities of the SET1/MLL complex core subunits in development and disease.
Biochim Biophys Acta Gene Regul Mech. 2020 Jul;1863(7):194560. doi: 10.1016/j.bbagrm.2020.194560. Epub 2020 Apr 15.
10
The SMOC-1 Protein Acts Cell Nonautonomously To Promote Bone Morphogenetic Protein Signaling.
Genetics. 2019 Feb;211(2):683-702. doi: 10.1534/genetics.118.301805. Epub 2018 Dec 5.

本文引用的文献

1
Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS.
Genetics. 1979 Jan;91(1):67-94. doi: 10.1093/genetics/91.1.67.
2
Egg-laying defective mutants of the nematode Caenorhabditis elegans.
Genetics. 1983 Aug;104(4):619-47. doi: 10.1093/genetics/104.4.619.
4
The Drosophila sex determination signal: how do flies count to two?
Trends Genet. 1993 Nov;9(11):385-90. doi: 10.1016/0168-9525(93)90138-8.
5
A second informational suppressor, SUP-7 X, in Caenorhabditis elegans.
Genetics. 1981 Feb;97(2):307-25. doi: 10.1093/genetics/97.2.307.
6
More sex-determination mutants of Caenorhabditis elegans.
Genetics. 1980 Nov;96(3):649-64. doi: 10.1093/genetics/96.3.649.
8
Sex determination and dosage compensation in Drosophila melanogaster.
Annu Rev Genet. 1983;17:345-93. doi: 10.1146/annurev.ge.17.120183.002021.
10
sdc-1: a link between sex determination and dosage compensation in C. elegans.
Cell. 1987 Jan 16;48(1):25-37. doi: 10.1016/0092-8674(87)90352-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验