Bartenschlager R, Ahlborn-Laake L, Yasargil K, Mous J, Jacobsen H
Institute for Virology, Johannes-Gutenberg-University of Mainz, Germany.
J Virol. 1995 Jan;69(1):198-205. doi: 10.1128/JVI.69.1.198-205.1995.
Processing of the hepatitis C virus polyprotein is accomplished by a series of cotranslational and posttranslational cleavages mediated by host cell signalases and two virally encoded proteinases. Of these the NS3 proteinase is essential for processing at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B junctions. Processing between NS3 and NS4A occurs in cis, implying an intramolecular reaction mechanism, whereas cleavage at the other sites can also be mediated in trans. Sequence analysis of the amino termini of mature cleavage products and comparisons of amino acid residues around the scissile bonds of various hepatitis C virus isolates identified amino acid residues which might contribute to substrate specificity and processing efficiency: an acidic amino acid at the P6 position, a Thr or Cys at the P1 position, and a Ser or Ala at the P1' position. To study the importance of these residues for NS3-mediated cleavage we have undertaken a mutational analysis using an NS3'-5B polyprotein expressed by recombinant vaccinia viruses in mammalian cells. For all NS3-dependent cleavage sites P1 substitutions had the most drastic effects on cleavage efficiency, showing that amino acid residues at this position are the most critical substrate determinants. Since less drastic effects were found for substitutions at the P1' position, these residues appear to be less important for proper cleavage. For all cleavage sites the P6 acidic residue was dispensable, suggesting that it is not essential for substrate recognition and subsequent cleavage. Analysis of a series of mutations at the NS3/4A site revealed great flexibility for substitutions compared with more stringent requirements at the trans cleavage sites. On the basis of these results we propose a model in which processing in cis is determined primarily by polyprotein folding, whereas cleavage in trans is governed not only by the structure of the polyprotein but also by specific interactions between the proteinase and the polyprotein substrate at or around the scissile bond.
丙型肝炎病毒多聚蛋白的加工过程是通过宿主细胞信号酶和两种病毒编码的蛋白酶介导的一系列共翻译和翻译后切割来完成的。其中,NS3蛋白酶对于在NS3/4A、NS4A/4B、NS4B/5A和NS5A/5B连接处的加工至关重要。NS3和NS4A之间的加工在顺式中发生,这意味着是一种分子内反应机制,而在其他位点的切割也可以通过反式介导。对成熟切割产物氨基末端的序列分析以及对各种丙型肝炎病毒分离株切割键周围氨基酸残基的比较,确定了可能有助于底物特异性和加工效率的氨基酸残基:P6位置的酸性氨基酸、P1位置的苏氨酸或半胱氨酸以及P1'位置的丝氨酸或丙氨酸。为了研究这些残基对NS3介导的切割的重要性,我们使用重组痘苗病毒在哺乳动物细胞中表达的NS3'-5B多聚蛋白进行了突变分析。对于所有依赖NS3的切割位点,P1取代对切割效率的影响最为显著,表明该位置的氨基酸残基是最关键的底物决定因素。由于在P1'位置的取代产生的影响较小,这些残基对于正确切割似乎不太重要。对于所有切割位点,P6酸性残基是可有可无的,这表明它对于底物识别和后续切割不是必需的。对NS3/4A位点一系列突变的分析表明,与反式切割位点更严格的要求相比,该位点的取代具有很大的灵活性。基于这些结果,我们提出了一个模型,其中顺式加工主要由多聚蛋白折叠决定,而反式切割不仅受多聚蛋白结构的控制,还受蛋白酶与切割键处或其周围的多聚蛋白底物之间特定相互作用的控制。