Rice L M, Brünger A T
Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06520.
Proteins. 1994 Aug;19(4):277-90. doi: 10.1002/prot.340190403.
A reduced variable conformational sampling strategy for macromolecules based on molecular dynamics in torsion angle space is evaluated using crystallographic refinement as a prototypical search problem. Bae and Haug's algorithm for constrained dynamics [Bae, D.S., Haug, E.J. A recursive formulation for constrained mechanical system dynamics. Mech. Struct. Mach. 15:359-382, 1987], originally developed for robotics, was used. Their formulation solves the equations of motion exactly for arbitrary holonomic constraints, and hence differs from commonly used approximation algorithms. It uses gradients calculated in Cartesian coordinates, and thus also differs from internal coordinate formulations. Molecular dynamics can be carried out at significantly higher temperatures due to the elimination of the high frequency bond and angle vibrations. The sampling strategy presented here combines high temperature torsion angle dynamics with repeated trajectories using different initial velocities. The best solutions can be identified by the free R value, or the R value if experimental phase information is appropriately included in the refinement. Applications to crystallographic refinement. Applications to crystallographic refinement show a significantly increased radius of convergence over conventional techniques. For a test system with diffraction data to 2 A resolution, slow-cooling protocols fail to converge if the backbone atom root mean square (rms) coordinate deviation from the crystal structure is greater than 1.25 A, but torsion angle refinement can correct backbone atom rms coordinate deviations up to approximately 1.7 A.
基于扭转角空间分子动力学的大分子可变构象采样策略,以晶体学精修作为典型搜索问题进行评估。使用了Bae和Haug最初为机器人技术开发的约束动力学算法[Bae, D.S., Haug, E.J. 约束机械系统动力学的递归公式。机械结构与机器 15:359 - 382, 1987]。他们的公式能精确求解任意完整约束下的运动方程,因此不同于常用的近似算法。它使用笛卡尔坐标中计算的梯度,所以也不同于内坐标公式。由于消除了高频键和角振动,分子动力学可以在显著更高的温度下进行。这里提出的采样策略将高温扭转角动力学与使用不同初始速度的重复轨迹相结合。最佳解可以通过自由R值来识别,如果在精修中适当地包含了实验相位信息,则可以通过R值来识别。应用于晶体学精修。应用于晶体学精修显示,与传统技术相比,收敛半径显著增加。对于一个具有2埃分辨率衍射数据的测试系统,如果主链原子的均方根(rms)坐标与晶体结构的偏差大于1.25埃,慢冷却方案无法收敛,但扭转角精修可以校正高达约1.7埃的主链原子rms坐标偏差。