Suppr超能文献

单体蛋白中的埋藏水和内部空腔。

Buried waters and internal cavities in monomeric proteins.

作者信息

Williams M A, Goodfellow J M, Thornton J M

机构信息

Department of Biochemistry and Molecular Biology, University College London, United Kingdom.

出版信息

Protein Sci. 1994 Aug;3(8):1224-35. doi: 10.1002/pro.5560030808.

Abstract

We have analyzed the buried water molecules and internal cavities in a set of 75 high-resolution, nonhomologous, monomeric protein structures. The number of hydrogen bonds formed between each water molecule and the protein varies from 0 to 4, with 3 being most common. Nearly half of the water molecules are found in pairs or larger clusters. Approximately 90% are shown to be associated with large cavities within the protein, as determined by a novel program, PRO_ACT. The total volume of a protein's large cavities is proportional to its molecular weight and is not dependent on structural class. The largest cavities in proteins are generally elongated rather than globular. There are many more empty cavities than hydrated cavities. The likelihood of a cavity being occupied by a water molecule increases with cavity size and the number of available hydrogen bond partners, with each additional partner typically stabilizing the occupied state by 0.6 kcal/mol.

摘要

我们分析了一组75个高分辨率、非同源单体蛋白质结构中的埋藏水分子和内部空洞。每个水分子与蛋白质形成的氢键数量从0到4不等,其中3个最为常见。近一半的水分子以成对或更大的簇状形式存在。通过一个名为PRO_ACT的新程序确定,大约90%的水分子与蛋白质内部的大空洞相关。蛋白质大空洞的总体积与其分子量成正比,且不依赖于结构类别。蛋白质中最大的空洞通常是细长的而非球状的。空洞中未被水合的空洞比有水合作用的空洞多得多。随着空洞大小和可用氢键伙伴数量的增加,空洞被水分子占据的可能性也会增加,每增加一个伙伴通常会使占据状态稳定0.6千卡/摩尔。

相似文献

5
Statistical survey of the buried waters in the Protein Data Bank.蛋白质数据库中埋藏水的统计调查。
Amino Acids. 2016 Jan;48(1):193-202. doi: 10.1007/s00726-015-2064-4. Epub 2015 Aug 28.
6
Cavities and packing at protein interfaces.蛋白质界面处的空洞与堆积
Protein Sci. 1994 Dec;3(12):2194-206. doi: 10.1002/pro.5560031205.
7
Hydrophilicity of cavities in proteins.蛋白质中空腔的亲水性。
Proteins. 1996 Apr;24(4):433-8. doi: 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F.
8
Intramolecular cavities in globular proteins.球状蛋白质中的分子内空腔。
Protein Eng. 1994 May;7(5):613-26. doi: 10.1093/protein/7.5.613.

引用本文的文献

2
Revisiting macromolecular hydration with HullRadSAS.重新审视 HullRadSAS 中的大分子水合作用。
Eur Biophys J. 2023 Jul;52(4-5):215-224. doi: 10.1007/s00249-022-01627-8. Epub 2023 Jan 5.
3
The Hydrophobic Effects: Our Current Understanding.疏水性效应:我们目前的理解。
Molecules. 2022 Oct 18;27(20):7009. doi: 10.3390/molecules27207009.
8
Water in protein hydration and ligand recognition.水在蛋白质水合和配体识别中的作用。
J Mol Recognit. 2019 Dec;32(12):e2810. doi: 10.1002/jmr.2810. Epub 2019 Aug 27.

本文引用的文献

4
Intramolecular cavities in globular proteins.球状蛋白质中的分子内空腔。
Protein Eng. 1994 May;7(5):613-26. doi: 10.1093/protein/7.5.613.
5
The pore dimensions of gramicidin A.短杆菌肽A的孔径尺寸。
Biophys J. 1993 Dec;65(6):2455-60. doi: 10.1016/S0006-3495(93)81293-1.
6
Structure of papain refined at 1.65 A resolution.木瓜蛋白酶结构在1.65埃分辨率下的精修。
J Mol Biol. 1984 Oct 25;179(2):233-56. doi: 10.1016/0022-2836(84)90467-4.
9
Hydrogen bonding in globular proteins.球状蛋白质中的氢键。
Prog Biophys Mol Biol. 1984;44(2):97-179. doi: 10.1016/0079-6107(84)90007-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验