Yin Q W, Johnson J, Prevette D, Oppenheim R W
Department of Neurobiology and Anatomy, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157.
J Neurosci. 1994 Dec;14(12):7629-40. doi: 10.1523/JNEUROSCI.14-12-07629.1994.
In the absence of descending spinal and supraspinal afferent inputs, neurons in the developing lumbar spinal cord of the chick embryo undergo regressive changes including cellular atrophy and degeneration between embryonic days 10 and 16. There are significant decreases in the number of motoneurons, interneurons, and sensory (dorsal root ganglion) neurons. Although there are several possible explanations for how afferents might regulate the maintenance of neuronal viability, we have focused attention on the putative role of neurotrophic agents in these events. Previous studies have shown that specific tissue extracts (e.g., muscle, brain), soluble proteins, growth factors, and trophic agents can promote the in vitro and in vivo survival of avian motoneurons during the period of natural cell death (embryonic days 6-10). Several of these agents were also effective following deafferentation. These included brain extract (BEX), muscle extract (MEX), conditioned medium from astrocyte cultures (ACM), as well as the following neurotrophic agents: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), S-100, insulin-like growth factor-I (IGF-I), ciliary neurotrophic factor (CNTF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and leukemia inhibitory factor (CDF/LIF). Both transforming growth factor-beta (TGF-beta) and acidic fibroblast growth factor (aFGF) were ineffective. Although considerable more work is needed to determine which (and how) specific CNS-derived trophic agents regulate motoneuron survival, the present results are consistent with the notion that neurotrophic agents released from or modulated by synaptic inputs to target neurons promote neuronal differentiation and survival in the CNS.
在没有下行脊髓和脊髓上传入输入的情况下,鸡胚发育中的腰脊髓中的神经元会发生退行性变化,包括在胚胎第10天至16天之间的细胞萎缩和退化。运动神经元、中间神经元和感觉(背根神经节)神经元的数量显著减少。尽管对于传入神经如何调节神经元活力的维持有几种可能的解释,但我们将注意力集中在神经营养因子在这些事件中的假定作用上。先前的研究表明,特定的组织提取物(如肌肉、脑)、可溶性蛋白质、生长因子和营养因子可以在自然细胞死亡期间(胚胎第6 - 10天)促进禽类运动神经元的体外和体内存活。其中几种因子在去传入神经后也有效。这些包括脑提取物(BEX)、肌肉提取物(MEX)、星形胶质细胞培养的条件培养基(ACM),以及以下神经营养因子:神经生长因子(NGF)、脑源性神经营养因子(BDNF)、神经营养素-3(NT-3)、S-100、胰岛素样生长因子-I(IGF-I)、睫状神经营养因子(CNTF)、血小板衍生生长因子(PDGF)、碱性成纤维细胞生长因子(bFGF)和白血病抑制因子(CDF/LIF)。转化生长因子-β(TGF-β)和酸性成纤维细胞生长因子(aFGF)均无效。尽管需要进行更多的工作来确定哪些(以及如何)特定的中枢神经系统衍生的营养因子调节运动神经元的存活,但目前的结果与这样的观点一致,即从靶神经元突触输入释放或受其调节的神经营养因子促进中枢神经系统中神经元的分化和存活。