Suppr超能文献

重复测量实验中单元内方差的贝叶斯层次分析。

Bayesian hierarchical analysis of within-units variances in repeated measures experiments.

作者信息

Ten Have T R, Chinchilli V M

机构信息

Center for Biostatistics and Epidemiology, Hershey Medical Center, Pennsylvania State University, Hershey 17033.

出版信息

Stat Med. 1994 Sep 30;13(18):1841-52. doi: 10.1002/sim.4780131806.

Abstract

We develop hierarchical Bayesian models for biomedical data that consist of multiple measurements on each individual under each of several conditions. The focus is on investigating differences in within-subject variation between conditions. We present both population-level and individual-level comparisons. We extend the partial likelihood models of Chinchilli et al. with a unique Bayesian hierarchical framework for variance components and associated degrees of freedom. We use the Gibbs sampler to estimate posterior marginal distributions for the parameters of the Bayesian hierarchical models. The application involves a comparison of two cholesterol analysers each applied repeatedly to a sample of subjects. Both the partial likelihood and Bayesian approaches yield similar results, although confidence limits tend to be wider under the Bayesian models.

摘要

我们为生物医学数据开发了分层贝叶斯模型,这些数据由在几种条件下对每个个体进行的多次测量组成。重点是研究不同条件下个体内部变异的差异。我们进行了总体水平和个体水平的比较。我们用一个独特的贝叶斯分层框架来扩展钦奇利等人的部分似然模型,用于方差分量和相关自由度。我们使用吉布斯采样器来估计贝叶斯分层模型参数的后验边缘分布。应用涉及比较两种胆固醇分析仪,每种分析仪都对一组受试者样本进行了重复应用。部分似然法和贝叶斯法都产生了相似的结果,尽管在贝叶斯模型下置信区间往往更宽。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验