Nicas M
Center for Occupational and Environmental Health, School of Public Health, University of California, Berkeley 94720.
Am Ind Hyg Assoc J. 1994 Jun;55(6):515-24. doi: 10.1080/15428119491018781.
The lognormal distribution typically is used to model variability in respiratory penetration values. The lognormal model is a good descriptor where the average penetration value is low, but may be a poor descriptor where the average penetration value is high because a significant fraction of penetration values could be predicted to exceed unity. In this regard, the beta distribution offers greater flexibility than the lognormal in modeling penetration values over the physically plausible interval [0,1]. The beta distribution also is shown to be mathematically convenient for describing the risk of airborne transmission of tuberculosis among a respirator-wearing population. Infection can occur following inhalation of respirable particles, termed droplet nuclei, carrying viable Mycobacterium tuberculosis bacilli. Based on the expected number of infectious doses inhaled, the Poisson probability model traditionally is used to predict an individual's risk of infection. This article synthesizes the beta distribution, as applied to average penetration values among a respirator-wearing population, and the Poisson distribution, as applied to an individual's infection risk, to describe the population risk of M. tuberculosis infection.
对数正态分布通常用于模拟呼吸穿透值的变异性。对数正态模型在平均穿透值较低时是一个很好的描述,但在平均穿透值较高时可能是一个较差的描述,因为可以预测相当一部分穿透值会超过1。在这方面,β分布在模拟物理上合理区间[0,1]内的穿透值时比对数正态分布具有更大的灵活性。β分布在数学上也被证明便于描述佩戴呼吸器人群中结核病空气传播的风险。吸入携带活结核分枝杆菌的可吸入颗粒(称为飞沫核)后可能会发生感染。基于吸入的感染剂量预期数量,传统上使用泊松概率模型来预测个体的感染风险。本文综合了应用于佩戴呼吸器人群平均穿透值的β分布和应用于个体感染风险的泊松分布,以描述结核分枝杆菌感染的人群风险。