Suppr超能文献

通过高效液相色谱法和模式识别对分枝杆菌菌种进行鉴定

Characterization of mycobacteria species by HPLC and pattern recognition.

作者信息

Ramos L S

机构信息

Infometrix, Inc., Seattle, Washington 98121.

出版信息

J Chromatogr Sci. 1994 Jun;32(6):219-27. doi: 10.1093/chromsci/32.6.219.

Abstract

Multivariate methods of analysis are used to characterize 36 mycobacteria species following high-performance liquid chromatography (HPLC) of extracts of mycolic acids. After growth of the bacterial cultures, cell wall mycolic acids are saponified, extracted, then derivatized to the p-bromophenacyl esters. Reversed-phase HPLC with gradient elution separates 38 peaks in 10 min, plus an internal standard. A training set of 276 samples is composed and classification models are developed to predict the mycobacteria species. Classifications during the training phase are 91 and 95% accurate for single-pass and multilevel approaches, respectively. Validation is performed with a 549-sample set; successful classifications of known species are 87 and 92%, respectively. Bunching the predictions of MAIS complex species into one category improves the latter result to 97% correctly classified species. Fourteen of the 27 species (including M. tuberculosis) are classified without error in the validation data set.

摘要

在对分枝菌酸提取物进行高效液相色谱(HPLC)分析后,采用多变量分析方法对36种分枝杆菌进行表征。细菌培养物生长后,细胞壁分枝菌酸进行皂化、提取,然后衍生化为对溴苯甲酰酯。采用梯度洗脱的反相HPLC在10分钟内分离出38个峰,外加一个内标。构建了一个由276个样本组成的训练集,并开发了分类模型来预测分枝杆菌种类。在训练阶段,单通道和多级方法的分类准确率分别为91%和95%。使用一个549个样本的集合进行验证;已知种类的成功分类率分别为87%和92%。将MAIS复合种类的预测归为一类可将后一结果提高到正确分类率97%。在验证数据集中,27种(包括结核分枝杆菌)中有14种分类无误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验