Suppr超能文献

序列统计能够可靠地预测蛋白质结构域中的稳定突变。

Sequence statistics reliably predict stabilizing mutations in a protein domain.

作者信息

Steipe B, Schiller B, Plückthun A, Steinbacher S

机构信息

Abteilung Strukturforschung, Max-Planck Institut für Biochemie, Martinsried, Germany.

出版信息

J Mol Biol. 1994 Jul 15;240(3):188-92. doi: 10.1006/jmbi.1994.1434.

Abstract

Immunoglobulin variable domains are generally thought of as well conserved platforms providing the base for antigen binding loops of highly varying sequence and structure. However, domain evolution must ensure a balance between optimizing antigen affinity and the requirements of a stable, cooperatively folding domain. Since random mutations can carry a significant penalty for domain stability, constraints are imposed both on the repertoire of germline sequences and on somatic amino acid replacements during affinity maturation. Analyzing these constraints in the conceptual framework of statistical mechanics, we have been able to predict stabilizing mutations in the McPC603 V kappa domain from sequence information alone with better than 60% success rate. The validity of this concept not only has far reaching implications for antibody engineering but may also be generalized to engineer other proteins for higher stability.

摘要

免疫球蛋白可变结构域通常被认为是高度保守的平台,为序列和结构高度可变的抗原结合环提供基础。然而,结构域的进化必须确保在优化抗原亲和力与稳定、协同折叠的结构域的要求之间取得平衡。由于随机突变可能对结构域稳定性造成重大不利影响,因此在种系序列库以及亲和力成熟过程中的体细胞氨基酸替换方面都存在限制。在统计力学的概念框架内分析这些限制因素后,我们仅根据序列信息就能预测McPC603 Vκ结构域中的稳定突变,成功率超过60%。这一概念的有效性不仅对抗体工程具有深远影响,还可能推广到对其他蛋白质进行工程改造以提高稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验