Suppr超能文献

作为晶状体晶状体蛋白的酶和应激蛋白的募集。

Recruitment of enzymes and stress proteins as lens crystallins.

作者信息

Piatigorsky J, Kantorow M, Gopal-Srivastava R, Tomarev S I

机构信息

Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892.

出版信息

EXS. 1994;71:241-50. doi: 10.1007/978-3-0348-7330-7_24.

Abstract

The major water-soluble proteins--or crystallins--of the eye lens are either identical to or derived from proteins with non-refractive functions in numerous tissues. In general, the recruitment of crystallins has come from metabolic enzymes (usually with detoxification functions) or stress proteins. Some crystallins have been recruited without duplication of the original gene (i.e., lactate dehydrogenase B and alpha-enolase), while others have incurred one (i.e., argininosuccinate lyase and a small heat shock protein) or several (i.e., glutathione S-transferase) gene duplications. Enzyme (or stress protein)-crystallins often maintain their non-refractive function in the lens and/or other tissues as well as their refractive role, a process we call gene sharing. alpha-Crystallin/small heat shock protein/molecular chaperone is of special interest since it is the major crystallin of humans. There are two alpha-crystallin genes (alpha A and alpha B), with alpha B retaining the full functions of a small heat shock protein. Here we describe recent evidence indicating that alpha A and alpha B have kinase activity, which would make them members of the enzyme-crystallins. We also describe various regulatory elements of the mouse alpha-crystallin genes responsible for their expression in the lens and, for alpha B, in skeletal muscle. Delineating the control elements for gene expression of these multifunctional protective proteins provides the foundations for their eventual use in gene therapy. Finally, comparison of the mouse and chicken alpha A-crystallin genes reveals similarities and differences in their functional cis-acting elements, indicative of evolution at the level of gene regulation.

摘要

眼晶状体的主要水溶性蛋白质(即晶状体蛋白),要么与众多组织中具有非屈光功能的蛋白质相同,要么由其衍生而来。一般来说,晶状体蛋白是从代谢酶(通常具有解毒功能)或应激蛋白中招募而来的。一些晶状体蛋白在招募时并未发生原始基因的复制(如乳酸脱氢酶B和α-烯醇化酶),而其他一些则经历了一次(如精氨琥珀酸裂解酶和一种小热休克蛋白)或几次(如谷胱甘肽S-转移酶)基因复制。酶(或应激蛋白)-晶状体蛋白通常在晶状体和/或其他组织中维持其非屈光功能以及屈光作用,我们将这一过程称为基因共享。α-晶状体蛋白/小热休克蛋白/分子伴侣特别值得关注,因为它是人类的主要晶状体蛋白。有两个α-晶状体蛋白基因(αA和αB),其中αB保留了小热休克蛋白的全部功能。在此我们描述最近的证据,表明αA和αB具有激酶活性,这将使它们成为酶-晶状体蛋白家族成员。我们还描述了小鼠α-晶状体蛋白基因的各种调控元件,这些元件负责它们在晶状体中的表达,对于αB来说,还负责其在骨骼肌中的表达。描绘这些多功能保护蛋白基因表达的调控元件为它们最终用于基因治疗奠定了基础。最后,对小鼠和鸡的αA-晶状体蛋白基因进行比较,揭示了它们功能性顺式作用元件的异同,这表明在基因调控水平上存在进化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验