Suppr超能文献

Adaptive radiofrequency hyperthermia-phased array system for improved cancer therapy: phantom target measurements.

作者信息

Fenn A J, King G A

机构信息

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington 02173-0073.

出版信息

Int J Hyperthermia. 1994 Mar-Apr;10(2):189-208. doi: 10.3109/02656739409009343.

Abstract

A computer-controlled adaptive radio-frequency hyperthermia system for improved therapeutic tumour heating is experimentally investigated. Adaptive array feedback techniques are used to modify the electric-field and temperature distribution in hyperthermia experiments with homogeneous and heterogeneous phantom targets. A commercial hyperthermia phased-array antenna system at the SUNY Health Science Center in Syracuse, New York, has been modified to implement adaptive nulling and adaptive focusing algorithms. The hyperthermia system is the BSD Medical Corporation Model BSD-2000 with Sigma-60 annular phased-array antenna applicator. The transmit phased array system is made adaptive by software modifications which invoke a gradient-search feedback algorithm. The gradient-search algorithm implements the method of steepest descent for adaptive nulling (power minimization) and the method of steepest ascent for adaptive focusing (power maximization). The feedback signals are provided by electric-field short-dipole probe antennas. With an adaptive hyperthermia array using real-time measured data, it may be possible to maximize the applied electric field at a tumour position in a complex scattering target body and simultaneously minimize or reduce the electric field at target positions where undesired high-temperature regions (hot spots) occur. The measured phantom-target data indicate that adaptive nulling can reduce the electric field at one or more target positions while simultaneously focusing the electric field at a deep-seated position within the target.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验