Gerdes V G, Happee R
Delft University of Technology, Department of Mechanical Engineering & Marine Technology, Mekelweg 2, 2628-CD Delft, The Netherlands.
Biol Cybern. 1994;70(6):513-24. doi: 10.1007/BF00198804.
This study investigates the role of the human central nervous system (CNS) in the control of fast goal-directed movements. The main problem is that the latencies inherent in the transmission of physiological signals cause a delayed feedback of sensory information. Therefore, the muscle command signals cannot be explained by a simple servo-loop, so a more sophisticated control structure is required. Our hypothesis is that the CNS employs an internal representation of the controlled system in order to circumvent the drawbacks of the physiological loop delay. To test this hypothesis a mathematical model based on an internal representation and an internal state feedback has been developed. Computer simulations of double-step stimuli (control behaviour), tendon vibration and torque disturbances (disturbance behaviour) and load perturbations (adaptation behaviour) proved to agree remarkably well with experimental observations. The proposed control model can explain the open-loop and closed-loop aspects of human motor control. Hence, the use of an internal representation in generating the muscle command signals is very plausible.
本研究调查了人类中枢神经系统(CNS)在快速目标导向运动控制中的作用。主要问题在于生理信号传输中固有的延迟会导致感觉信息的反馈延迟。因此,肌肉指令信号无法用简单的伺服回路来解释,所以需要一种更复杂的控制结构。我们的假设是,中枢神经系统采用受控系统的内部表征来规避生理回路延迟的缺点。为了验证这一假设,已开发出一种基于内部表征和内部状态反馈的数学模型。对双步刺激(控制行为)、肌腱振动和扭矩干扰(干扰行为)以及负载扰动(适应行为)的计算机模拟结果与实验观察结果非常吻合。所提出的控制模型能够解释人类运动控制的开环和闭环方面。因此,在生成肌肉指令信号时使用内部表征是非常合理的。