Suppr超能文献

自主运动过程中拮抗肌刚度的最优控制。

Optimal control of antagonistic muscle stiffness during voluntary movements.

作者信息

Lan N, Crago P E

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106.

出版信息

Biol Cybern. 1994;71(2):123-35. doi: 10.1007/BF00197315.

Abstract

This paper presents a study on the control of antagonist muscle stiffness during single-joint arm movements by optimal control theory with a minimal effort criterion. A hierarchical model is developed based on the physiology of the neuromuscular control system and the equilibrium point hypothesis. For point-to-point movements, the model provides predictions on (1) movement trajectory, (2) equilibrium trajectory, (3) muscle control inputs, and (4) antagonist muscle stiffness, as well as other variables. We compared these model predictions to the behavior observed in normal human subjects. The optimal movements capture the major invariant characteristics of voluntary movements, such as a sigmoidal movement trajectory with a bell-shaped velocity profile, an 'N'-shaped equilibrium trajectory, a triphasic burst pattern of muscle control inputs, and a dynamically modulated joint stiffness. The joint stiffness is found to increase in the middle of the movement as a consequence of the triphasic muscle activities. We have also investigated the effects of changes in model parameters on movement control. We found that the movement kinematics and muscle control inputs are strongly influenced by the upper bound of the descending excitation signal that activates motoneuron pools in the spinal cord. Furthermore, a class of movements with scaled velocity profiles can be achieved by tuning the amplitude and duration of this excitation signal. These model predictions agree with a wide body of experimental data obtained from normal human subjects. The results suggest that the control of fast arm movements involves explicit planning for both the equilibrium trajectory and joint stiffness, and that the minimal effort criterion best characterizes the objective of movement planning and control.

摘要

本文提出了一项利用最优控制理论和最小努力准则对单关节手臂运动过程中拮抗肌刚度进行控制的研究。基于神经肌肉控制系统的生理学和平衡点假设建立了一个层次模型。对于点对点运动,该模型提供了关于(1)运动轨迹、(2)平衡轨迹、(3)肌肉控制输入和(4)拮抗肌刚度以及其他变量的预测。我们将这些模型预测结果与正常人类受试者中观察到的行为进行了比较。最优运动捕捉了自愿运动的主要不变特征,例如具有钟形速度分布的S形运动轨迹、“N”形平衡轨迹、肌肉控制输入的三相爆发模式以及动态调制的关节刚度。由于三相肌肉活动,发现关节刚度在运动中间增加。我们还研究了模型参数变化对运动控制的影响。我们发现运动运动学和肌肉控制输入受到激活脊髓运动神经元池的下行兴奋信号上限的强烈影响。此外,通过调整该兴奋信号的幅度和持续时间,可以实现一类具有缩放速度分布的运动。这些模型预测与从正常人类受试者获得的大量实验数据一致。结果表明,快速手臂运动的控制涉及对平衡轨迹和关节刚度的明确规划,并且最小努力准则最能表征运动规划和控制的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验