Suppr超能文献

平面手臂运动比例微分控制器的优化与评估。

Optimization and evaluation of a proportional derivative controller for planar arm movement.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.

Abstract

In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased.

摘要

在功能电刺激 (FES) 的大多数临床应用中,电刺激的时间和幅度由开环模式发生器控制。然而,上肢运动的控制将需要反馈控制来实现所需的精度。在这里,我们提出了三种使用比例微分 (PD) 反馈来刺激六个手臂肌肉的控制器,使用两个关节角度传感器。控制器首先通过最小化位置误差和肌肉力的加权和来优化,然后在包括肌肉骨骼动力学的计算手臂模型上进行评估。通过对未优化的控制器执行运动来评估控制器的通用性,并通过具有随机弱化肌肉的模型模拟来测试鲁棒性。通过添加关节摩擦和将手臂质量增加一倍来进一步评估鲁棒性。使用适当加权的成本函数进行优化后,所有 PD 控制器在模拟中都能快速、准确且稳健地进行运动。在不当调整后会出现振荡行为。随着反馈增益矩阵的复杂性增加,性能略有提高。

相似文献

8
Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.二维手臂运动的功能性电刺激反馈控制。
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2033-2043. doi: 10.1109/TNSRE.2018.2853573. Epub 2018 Jul 5.
10
From the motor cortex to the movement and back again.从运动皮层到运动,再返回。
PLoS One. 2017 Jun 20;12(6):e0179288. doi: 10.1371/journal.pone.0179288. eCollection 2017.

引用本文的文献

5
Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.功能性电刺激下保持静态手臂姿势:病例研究。
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2044-2052. doi: 10.1109/TNSRE.2018.2866226. Epub 2018 Aug 20.
7
A Probabilistic Analysis of Muscle Force Uncertainty for Control.用于控制的肌肉力量不确定性的概率分析。
IEEE Trans Biomed Eng. 2016 Nov;63(11):2359-2367. doi: 10.1109/TBME.2016.2531083. Epub 2016 Feb 18.
9
Brain-controlled muscle stimulation for the restoration of motor function.用于恢复运动功能的脑控肌肉刺激
Neurobiol Dis. 2015 Nov;83:180-90. doi: 10.1016/j.nbd.2014.10.014. Epub 2014 Oct 28.

本文引用的文献

2
An improved auto-tuning scheme for PID controllers.一种用于PID控制器的改进型自动调谐方案。
ISA Trans. 2009 Oct;48(4):396-409. doi: 10.1016/j.isatra.2009.07.002. Epub 2009 Aug 3.
4
Passive exoskeletons for assisting limb movement.用于辅助肢体运动的被动外骨骼。
J Rehabil Res Dev. 2006 Aug-Sep;43(5):583-90. doi: 10.1682/jrrd.2005.04.0070.
9
Biological arm motion through reinforcement learning.通过强化学习实现生物手臂运动。
Biol Cybern. 2004 Jul;91(1):10-22. doi: 10.1007/s00422-004-0485-3. Epub 2004 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验