Teka Wondimu W, Hamade Khaldoun C, Barnett William H, Kim Taegyo, Markin Sergey N, Rybak Ilya A, Molkov Yaroslav I
Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana, United States of America.
Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America.
PLoS One. 2017 Jun 20;12(6):e0179288. doi: 10.1371/journal.pone.0179288. eCollection 2017.
The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.
运动皮层通过产生特定于运动的信号并将其通过脊髓回路和运动神经元传递到肌肉来控制运动行为。精确且协调良好的肌肉激活模式对于准确执行运动是必要的。因此,皮层神经元的活动应与运动参数相关。为了研究运动皮层、脊髓网络和肌肉活动之间这种相关性的具体情况,我们开发了一个用于目标导向伸手运动神经控制的模型,该模型模拟了从运动皮层通过脊髓回路到控制手臂运动的肌肉的整个路径。在这个模型中,手臂由两个关节(肩部和肘部)组成,其运动由六块肌肉驱动(4块单关节和2块双关节屈肌和伸肌)。这些肌肉向脊髓回路提供传入反馈。皮层神经元被定义为皮层“控制器”,它们基于到目标位置的提议直线轨迹和预定义的钟形速度分布来解决逆问题。因此,控制器生成一个运动程序,该程序产生特定于任务的低水平脊髓回路激活,进而诱导肌肉激活以实现预期的伸手运动。使用该模型,我们描述了皮层和运动神经元活动与运动方向及其他运动参数之间的相关机制。我们表明,运动皮层和脊髓中神经元活动的方向调制可能源于肌肉长度的方向特异性动态变化。我们的模型表明,方向调制首先出现在肌肉力的水平,在运动神经元水平增强,并且由于关节中的摩擦力、肌肉的收缩性以及传入反馈对肌肉长度和 / 或速度的依赖性,在运动皮层水平进一步增加。