Suppr超能文献

双光子分子激发为基于激光的显微镜技术和微光化学提供了固有的三维分辨率。

Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry.

作者信息

Williams R M, Piston D W, Webb W W

机构信息

Department of Physics, Cornell University, Ithaca, New York 14853.

出版信息

FASEB J. 1994 Aug;8(11):804-13. doi: 10.1096/fasebj.8.11.8070629.

Abstract

With the development of sensitive and specific fluorescent indicators, modern laser scanning microscopies enable visualization and measurement of submicron, dynamic processes inside living cells and tissues. Here we describe the working principles of new, nonlinear laser microscopies based on two-photon molecular excitation. In these techniques, a pulsed laser produces peak photon densities high enough that when focused into an appropriate medium, excitation by photon energy combinations can occur. For example, two red photons interacting simultaneously with a fluorescent molecule can excite within it a UV electronic transition, one corresponding to twice the energy of each single photon. Because the amount of two-photon excitation depends on the square of the local illumination intensity, this process exhibits a unique localization to the diffraction-limited spot of the beam focus. Elsewhere along the beam, excitation of background and photodamage is virtually nonexistent. Focal point localization of two-photon excitation lends to all visualization, measurement, and photopharmacology studies an intrinsic, three-dimensional resolution. We describe some preliminary biological applications, specifically, imaging of vital DNA stains in developing cells and embryos, imaging of cellular metabolic activity from NADH autofluorescence, spatially resolved measurements of cytoplasmic calcium ion activity, and optically induced micropharmacology using caged bioeffector molecules.

摘要

随着灵敏且特异的荧光指示剂的发展,现代激光扫描显微镜能够对活细胞和组织内亚微米级的动态过程进行可视化和测量。在此,我们描述基于双光子分子激发的新型非线性激光显微镜的工作原理。在这些技术中,脉冲激光产生的峰值光子密度足够高,以至于当聚焦到合适的介质中时,光子能量组合能够引发激发。例如,两个红色光子同时与一个荧光分子相互作用,可以在其中激发一个紫外电子跃迁,该跃迁对应的能量是每个单个光子能量的两倍。由于双光子激发的量取决于局部照明强度的平方,这一过程对光束焦点的衍射极限光斑表现出独特的定位性。在光束的其他位置,背景激发和光损伤几乎不存在。双光子激发的焦点定位赋予所有可视化、测量和光药理学研究一种固有的三维分辨率。我们描述了一些初步的生物学应用,具体包括发育中的细胞和胚胎中重要DNA染色的成像、基于NADH自发荧光的细胞代谢活性成像、细胞质钙离子活性的空间分辨测量以及使用笼锁生物效应分子的光诱导微药理学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验