Suppr超能文献

非线性光学显微镜:从基础到在活体细胞成像中的应用

Nonlinear Optical Microscopy: From Fundamentals to Applications in Live Bioimaging.

作者信息

Parodi Valentina, Jacchetti Emanuela, Osellame Roberto, Cerullo Giulio, Polli Dario, Raimondi Manuela Teresa

机构信息

Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.

Istituto di Fotonica e Nanotecnologie (IFN) - CNR, Milan, Italy.

出版信息

Front Bioeng Biotechnol. 2020 Oct 9;8:585363. doi: 10.3389/fbioe.2020.585363. eCollection 2020.

Abstract

A recent challenge in the field of bioimaging is to image vital, thick, and complex tissues in real time and in non-invasive mode. Among the different tools available for diagnostics, nonlinear optical (NLO) multi-photon microscopy allows label-free non-destructive investigation of physio-pathological processes in live samples at sub-cellular spatial resolution, enabling to study the mechanisms underlying several cellular functions. In this review, we discuss the fundamentals of NLO microscopy and the techniques suitable for biological applications, such as two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG-THG), and coherent Raman scattering (CRS). In addition, we present a few of the most recent examples of NLO imaging employed as a label-free diagnostic instrument to functionally monitor and vital biological specimens in their unperturbed state, highlighting the technological advantages of multi-modal, multi-photon NLO microscopy and the outstanding challenges in biomedical engineering applications.

摘要

生物成像领域最近面临的一项挑战是对活体、厚且复杂的组织进行实时、非侵入式成像。在可用于诊断的不同工具中,非线性光学(NLO)多光子显微镜能够在亚细胞空间分辨率下对活样本中的生理病理过程进行无标记、非破坏性研究,从而有助于研究多种细胞功能背后的机制。在本综述中,我们讨论了NLO显微镜的基本原理以及适用于生物应用的技术,如双光子激发荧光(TPEF)、二次和三次谐波产生(SHG - THG)以及相干拉曼散射(CRS)。此外,我们展示了一些NLO成像的最新实例,这些成像被用作无标记诊断仪器,以在未受干扰的状态下对重要生物标本进行功能监测,突出了多模态、多光子NLO显微镜的技术优势以及生物医学工程应用中面临的重大挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a67a/7581943/494fd243eaaa/fbioe-08-585363-g001.jpg

相似文献

1
Nonlinear Optical Microscopy: From Fundamentals to Applications in Live Bioimaging.
Front Bioeng Biotechnol. 2020 Oct 9;8:585363. doi: 10.3389/fbioe.2020.585363. eCollection 2020.
2
Label-free nonlinear optical imaging of mouse retina.
Biomed Opt Express. 2015 Feb 26;6(3):1055-66. doi: 10.1364/BOE.6.001055. eCollection 2015 Mar 1.
3
Harmonic optical microscopy and fluorescence lifetime imaging platform for multimodal imaging.
Microsc Res Tech. 2012 Oct;75(10):1383-94. doi: 10.1002/jemt.22078. Epub 2012 May 31.
4
Multimodal Nonlinear Optical Microscopy.
Laser Photon Rev. 2011 Jul;5(4). doi: 10.1002/lpor.201000027.
6
Tri-modal microscopy with multiphoton and optical coherence microscopy/tomography for multi-scale and multi-contrast imaging.
Biomed Opt Express. 2013 Aug 8;4(9):1584-94. doi: 10.1364/BOE.4.001584. eCollection 2013.
8
In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy.
J Microsc. 2008 Jan;229(Pt 1):141-50. doi: 10.1111/j.1365-2818.2007.01876.x.
9
Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging.
IEEE J Sel Top Quantum Electron. 2008 Jan 1;14(1):4-9. doi: 10.1109/JSTQE.2007.913419.

引用本文的文献

1
Current Trends and Advances in Nanoplatforms-Based Imaging for Cancer Diagnosis.
Indian J Microbiol. 2025 Mar;65(1):137-176. doi: 10.1007/s12088-024-01373-9. Epub 2024 Aug 9.
2
Pair Natural Orbitals for Coupled Cluster Quadratic Response Theory.
J Phys Chem A. 2025 May 22;129(20):4601-4610. doi: 10.1021/acs.jpca.5c01617. Epub 2025 May 9.
3
Video microscopy: an old story with a bright biological future.
Biomed Eng Online. 2025 Apr 16;24(1):44. doi: 10.1186/s12938-025-01375-8.
4
Dynamic imaging of myelin pathology in physiologically preserved human brain tissue using third harmonic generation microscopy.
PLoS One. 2025 Mar 31;20(3):e0310663. doi: 10.1371/journal.pone.0310663. eCollection 2025.
5
Methods for Pluripotent Stem Cell Characterization: A Narrative Review.
Cureus. 2025 Jan 13;17(1):e77362. doi: 10.7759/cureus.77362. eCollection 2025 Jan.
6
Raman Spectroscopy in Cellular and Tissue Aging Research.
Aging Cell. 2025 Feb;24(2):e14494. doi: 10.1111/acel.14494. Epub 2025 Jan 28.
7
Quantitative phase imaging by gradient retardance optical microscopy.
Sci Rep. 2024 Apr 29;14(1):9754. doi: 10.1038/s41598-024-60057-y.
10
Direct Observation of Circularly Polarized Nonlinear Optical Activities in Chiral Hybrid Lead Halides.
J Am Chem Soc. 2024 May 1;146(17):11835-11844. doi: 10.1021/jacs.4c00619. Epub 2024 Apr 3.

本文引用的文献

3
Study on melanin enhanced third harmonic generation in a live cell model.
Biomed Opt Express. 2019 Oct 14;10(11):5716-5723. doi: 10.1364/BOE.10.005716. eCollection 2019 Nov 1.
4
Multiphoton microscopy in surgical oncology- a systematic review and guide for clinical translatability.
Surg Oncol. 2019 Dec;31:119-131. doi: 10.1016/j.suronc.2019.10.011. Epub 2019 Oct 16.
7
Molecular understanding of label-free second harmonic imaging of microtubules.
Nat Commun. 2019 Aug 6;10(1):3530. doi: 10.1038/s41467-019-11463-8.
8
Live-imaging of Bioengineered Cartilage Tissue using Multimodal Non-linear Molecular Imaging.
Sci Rep. 2019 Apr 3;9(1):5561. doi: 10.1038/s41598-019-41466-w.
9
Quantitative Label-Free Imaging of 3D Vascular Networks Self-Assembled in Synthetic Hydrogels.
Adv Healthc Mater. 2019 Jan;8(2):e1801186. doi: 10.1002/adhm.201801186. Epub 2018 Dec 19.
10
Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models.
Cytometry A. 2019 Jan;95(1):80-92. doi: 10.1002/cyto.a.23632. Epub 2018 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验