Suppr超能文献

Head movement in normal subjects during simulated PET brain imaging with and without head restraint.

作者信息

Green M V, Seidel J, Stein S D, Tedder T E, Kempner K M, Kertzman C, Zeffiro T A

机构信息

Department of Nuclear Medicine, National Institutes of Health, Bethesda, MD 20892.

出版信息

J Nucl Med. 1994 Sep;35(9):1538-46.

PMID:8071706
Abstract

UNLABELLED

Head movement during brain imaging is recognized as a source of image degradation in PET and most other forms of medical brain imaging. However, little quantitative information is available on the kind and amount of head movement that actually occurs during these studies. We sought to obtain this information by measuring head movement in normal volunteers.

METHODS

Head position data were acquired for 40 min in each of 13 supine subjects with and without head restraint. These data were then used to drive a mathematically simulated head through exactly the same set of movements. The positions of point sources embedded in this head were computed at each location and these data summarized as movement at FWHM in each of the three coordinate directions.

RESULTS

Head movement increased with the length of the sampling interval for studies of either type (with or without head restraint), but the amount and rate of increase with restraint was much smaller. In contrast, head movement during consecutive, short sampling intervals was small and did not increase with time. Spatial gradients in head movement were detected within each study type, and significant spatial differences in head movement were found between study types.

CONCLUSIONS

Head movements in normal, supine subjects, though small, can cause the effective resolution of a brain imaging study to appear to vary in space and time. These effects can be reduced significantly with head restraint and may also be reduced by dividing the acquisition of a single image into a sequence of short images (instead of a single long image), aligning these images spatially and summing the result.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验