Suppr超能文献

正电子发射断层扫描(PET)脑成像中基于框架的头部运动估计的改进

Improved frame-based estimation of head motion in PET brain imaging.

作者信息

Mukherjee J M, Lindsay C, Mukherjee A, Olivier P, Shao L, King M A, Licho R

机构信息

Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655.

Aware, Inc., Bedford, Massachusetts 01730.

出版信息

Med Phys. 2016 May;43(5):2443. doi: 10.1118/1.4946814.

Abstract

PURPOSE

Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method.

METHODS

The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation.

RESULTS

The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions.

CONCLUSIONS

The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.

摘要

目的

PET脑成像过程中的头部运动可导致图像质量显著下降。几位作者提出了补偿PET脑运动以恢复图像质量并改善定量分析的方法。头部固定装置可减少运动,但不可靠;因此需要诸如数据驱动的运动估计或外部运动跟踪等替代策略。在此,作者提出了一种数据驱动的运动估计方法,该方法使用一种预处理技术,允许使用持续时间非常短的帧,从而减少在多帧采集方法中常见的帧内运动问题。

方法

将PET采集的列表模式数据均匀地划分为5秒的帧,并在不进行衰减校正的情况下重建图像。使用三维多分辨率配准算法估计帧间运动,随后进行补偿。在本研究中,作者使用了8项PET脑研究,这些研究使用F-18 FDG作为示踪剂,且初始运动轻微或无初始运动。在重建后且在运动估计之前,将已知运动引入每一帧以模拟PET采集期间的头部运动。为了研究不同长度帧在运动估计和补偿方面的权衡,作者相应地对5秒的帧进行求和以生成10秒和60秒的帧。然后将从运动补偿重建帧生成的求和图像与未进行运动补偿的原始PET图像重建进行比较。

结果

作者发现,他们的方法能够使用短至5秒的帧时间来补偿逐渐运动和阶梯状运动,平均空间精度为0.2毫米。与所研究的其他类型相比,涉及所有六个自由度的复杂志愿者运动的估计精度较低(平均0.3毫米)。5秒图像的预处理对于成功的图像配准是必要的。由于他们的方法使用未进行衰减校正的帧,因此不易受到CT和PET采集之间引入的运动的影响。

结论

作者表明,他们可以使用未进行衰减校正的重建FDG PET脑图像来估计时间间隔短至5秒的帧的运动。基于运动类型,6帧中的帧内运动导致精度下降至约2毫米。

相似文献

3

引用本文的文献

1
Reproducible brain PET data analysis: easier said than done.可重复性脑PET数据分析:说起来容易做起来难。
Front Neuroinform. 2024 Sep 30;18:1420315. doi: 10.3389/fninf.2024.1420315. eCollection 2024.

本文引用的文献

1
Strategies for Motion Tracking and Correction in PET.正电子发射断层扫描(PET)中运动跟踪与校正策略
PET Clin. 2007 Apr;2(2):251-66. doi: 10.1016/j.cpet.2007.08.002. Epub 2008 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验