Yarnold P R, Soltysik R C, Martin G J
Division of General Internal Medicine, Northwestern University Medical School, Chicago, IL 60611.
Stat Med. 1994 May 30;13(10):1015-21. doi: 10.1002/sim.4780131004.
The statistical classification problem motivates the search for an analytical procedure capable of classifying observations accurately into one of two or more groups on the basis of information with respect to one or more attributes, and constitutes a fundamental challenge for all scientific disciplines. Although there are many classification methodologies, only optimal discriminant analysis (ODA) explicitly guarantees that the discriminant classifier will maximize classification accuracy in the training sample. This paper presents the first example of multivariable ODA (MultiODA) in medicine, for an application in which we employ three attributes (age and two measures of heart rate variability) to predict susceptibility to sudden cardiac death for a sample of 45 patients. MultiODA outperformed logistic regression analysis on every classification performance index (overall accuracy, sensitivity, specificity, and positive and negative predictive values). In fact, the worst performance result achieved by MultiODA (in total sample or leave-one-out validity analysis) exceeded the best performance achieved by logistic regression analysis. We conclude that ODA offers promise as a methodology capable of improving the classification performance achieved by medical researchers, and that clearly merits investigation in future research.
统计分类问题促使人们寻找一种分析程序,该程序能够根据一个或多个属性的信息将观测值准确地分类到两个或更多组中的一组,这对所有科学学科来说都是一项根本性挑战。虽然有许多分类方法,但只有最优判别分析(ODA)明确保证判别分类器在训练样本中能使分类准确率最大化。本文展示了医学领域多变量ODA(MultiODA)的首个实例,应用中我们采用三个属性(年龄和两种心率变异性测量指标)来预测45例患者样本的心源性猝死易感性。在各项分类性能指标(总体准确率、敏感性、特异性以及阳性和阴性预测值)上,MultiODA均优于逻辑回归分析。事实上,MultiODA取得的最差性能结果(在总样本或留一法有效性分析中)超过了逻辑回归分析取得的最佳性能结果。我们得出结论,ODA作为一种能够提升医学研究人员分类性能的方法具有前景,显然值得在未来研究中进行探究。