Suppr超能文献

Binding constants and stoichiometries of glyceraldehyde 3-phosphate dehydrogenase-tubulin complexes.

作者信息

Muronetz V I, Wang Z X, Keith T J, Knull H R, Srivastava D K

机构信息

Biochemistry Department, North Dakota State University, Fargo 58105.

出版信息

Arch Biochem Biophys. 1994 Sep;313(2):253-60. doi: 10.1006/abbi.1994.1385.

Abstract

The catalytic activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) decreased (almost linearly) as a function of increasing concentrations of tubulin; the total loss in activity was attained at a ratio of 1.2 to 1.8 tubulin dimer to GAPDH tetramer. Based on the inhibition data, a dissociation constant for the tubulin-GAPDH complex was calculated to be about 0.73 nM. The stoichiometry and the dissociation constants of the tubulin-GAPDH complex were found to be dependent upon the ionic strength of the assay media. Qualitatively similar results were obtained (i.e., inhibition and ionic strength effect) when the GAPDH-catalyzed reaction was measured in the presence of Sepharose-immobilized tubulin. The physical interaction between these two proteins, i.e., GAPDH and tubulin, was measured by the ability of one protein (immobilized on a Sepharose matrix) to copellet the other protein. By employing this copelleting technique, we measured the dissociation constant and stoichiometry of the immobilized tubulin-GAPDH complex to be about 6.4 nM and 0.91 tubulin dimer/GAPDH tetramer, respectively. The dissociation constant and stoichiometry thus obtained were found to be remarkably similar to those obtained by the tubulin-dependent GAPDH inhibition data. In contrast to these results, (soluble) tubulin had no effect on the catalytic activity of the immobilized GAPDH, albeit the soluble tubulin copelleted with the immobilized GAPDH. The dissociation constant and stoichiometry of immobilized GAPDH-tubulin complex were calculated to be 0.76 +/- 0.13 microM and 3.23 +/- 0.16 tubulin dimer/GAPDH tetramer, respectively. These data suggest that there are two classes of binding sites for tubulin on a tetrameric GAPDH; high-affinity and low-affinity sites. The enzyme is inhibited when tubulin binds at the high-affinity site while the catalytic function of the enzyme is unaffected when the tubulin binds at the low-affinity site. The latter site is suggested herein to be responsible for the cross-linking (bundling) of microtubules.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验