Suppr超能文献

基于观察和实验数据的锂动力学群体特征的非参数估计:使用新的贝叶斯方法实现慢性给药方案的个体化

Nonparametric estimation of population characteristics of the kinetics of lithium from observational and experimental data: individualization of chronic dosing regimen using a new Bayesian approach.

作者信息

Taright N, Mentré F, Mallet A, Jouvent R

机构信息

INSERM U194, Service d'Informatique Médicale, CHU Pitié-Salpétrière, Paris, France.

出版信息

Ther Drug Monit. 1994 Jun;16(3):258-69. doi: 10.1097/00007691-199406000-00006.

Abstract

A population analysis of the kinetics of lithium was performed from experimental and observational data in 113 subjects in order to propose a new approach for lithium dosage individualization. The kinetics of lithium is described by a two-compartment model. Age, body weight, height, and serum creatinine are included as covariates. Population analysis was performed by the nonparametric maximum likelihood method, which provides an estimate of the distribution of the five kinetic parameters and covariates. Mean lithium clearance was 1.50 L/h with a coefficient of variation (CV) of 38%, and was found to increase with body weight. Results were consistent with those of earlier studies and confirm a large interindividual variability. Data from a separate group of 35 patients were used to validate results: the estimated a priori and on covariate conditional distributions of the measured 24-h serum lithium concentration following a single dose were consistent with the corresponding measurements. A Bayesian approach for individualizing dosing schemes is proposed. This approach is based on minimization of a risk function expressing the deviation of the trough concentration at steady-state from the therapeutic range.

摘要

为了提出一种锂剂量个体化的新方法,对113名受试者的实验和观察数据进行了锂动力学的群体分析。锂动力学由二室模型描述。年龄、体重、身高和血清肌酐作为协变量纳入。群体分析采用非参数最大似然法进行,该方法可估计五个动力学参数和协变量的分布。锂的平均清除率为1.50L/h,变异系数(CV)为38%,且发现其随体重增加。结果与早期研究一致,并证实个体间存在较大差异。来自另一组35名患者的数据用于验证结果:单剂量后测量的24小时血清锂浓度的先验估计值和基于协变量的条件分布与相应测量值一致。提出了一种个体化给药方案的贝叶斯方法。该方法基于最小化一个风险函数,该函数表示稳态时谷浓度与治疗范围的偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验