Suppr超能文献

Phosphorylation of the alpha subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat.

作者信息

Burda J, Martín M E, García A, Alcázar A, Fando J L, Salinas M

机构信息

Department of Neurochemistry, Slovak Academy of Sciences, Kosice.

出版信息

Biochem J. 1994 Sep 1;302 ( Pt 2)(Pt 2):335-8. doi: 10.1042/bj3020335.

Abstract

Rats were subjected to the standard four-vessel occlusion model of cerebral transient ischaemia (vertebral and carotid arteries) for 15 and 30 min. After a 30 min recirculation period, protein synthesis rate, initiation factor 2 (eIF-2) and guanine nucleotide exchange factor (GEF) activities, and the level of phosphorylation of the alpha subunit of eIF-2 (eIF-2 alpha) were determined in the neocortex region of the brain from sham-operated controls and ischaemic animals. Following reversible cerebral ischaemia, the protein synthesis rate, as measured in a cell-free system, was significantly inhibited (70%) in the ischaemic animals. eIF-2 activity, as measured by its ability to form a ternary complex, also decrease parallel to the decrease in protein synthesis. As eIF-2 activity was assayed in the presence of Mg2+ and GTP-regenerating capacity, the decrease in ternary-complex formation indicated the possible impairment of GEF activity. Since phosphorylated eIF-2 [eIF-2(alpha P)] is a powerful inhibitor of GEF, the levels of phosphorylated eIF-2 alpha were determined, and an increase from 7% phosphorylation in sham control rats to 20% phosphorylation in 15 min and 29% phosphorylation in 30 min in ischaemic rats was observed, providing evidence for a tight correlation of phosphorylation of eIF-2 alpha and inhibition of protein synthesis. Moreover, GEF activity measured in the GDP-exchange assay was in fact inhibited in the ischaemic animals, proving that protein synthesis is impaired by the presence of eIF-2(alpha P), which blocks eIF-2 recycling.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9b/1137233/3a03d3802b0c/biochemj00080-0033-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验