Suppr超能文献

位点特异性突变和补偿性突变意味着质子传递到光合反应中心的QB结合位点存在意想不到的途径。

Site-specific and compensatory mutations imply unexpected pathways for proton delivery to the QB binding site of the photosynthetic reaction center.

作者信息

Hanson D K, Tiede D M, Nance S L, Chang C H, Schiffer M

机构信息

Biological and Medical Research Division, Argonne National Laboratory, IL 60439.

出版信息

Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8929-33. doi: 10.1073/pnas.90.19.8929.

Abstract

In photosynthetic reaction centers, a quinone molecule, QB, is the terminal acceptor in light-induced electron transfer. The protonatable residues Glu-L212 and Asp-L213 have been implicated in the binding of QB and in proton transfer to QB anions generated by electron transfer from the primary quinone QA. Here we report the details of the construction of the Ala-L212/Ala-L213 double mutant strain by site-specific mutagenesis and show that its photosynthetic incompetence is due to an inability to deliver protons to the QB anions. We also report the isolation and biophysical characterization of a collection of revertant and suppressor strains that have regained the photosynthetic phenotype. The compensatory mutations that restore function are diverse and show that neither Glu-L212 nor Asp-L213 is essential for efficient light-induced electron or proton transfer in Rhodobacter capsulatus. Second-site mutations, located within the QB binding pocket or at more distant sites, can compensate for mutations at L212 and L213 to restore photocompetence. Acquisition of a single negatively charged residue (at position L213, across the binding pocket at position L225, or outside the pocket at M43) or loss of a positively charged residue (at position M231) is sufficient to restore proton transfer activity to the complex. The proton transport pathways in the suppressor strains cannot, in principle, be identical to that of the wild type. The apparent mutability of this pathway suggests that the reaction center can serve as a model system to study the structural basis of protein-mediated proton transport.

摘要

在光合反应中心,醌分子QB是光诱导电子转移的终端受体。可质子化的残基Glu-L212和Asp-L213与QB的结合以及质子向由初级醌QA的电子转移产生的QB阴离子的转移有关。在此,我们报告了通过定点诱变构建Ala-L212/Ala-L213双突变菌株的详细情况,并表明其光合无能是由于无法将质子传递给QB阴离子。我们还报告了一组恢复光合表型的回复突变株和抑制菌株的分离及生物物理特性。恢复功能的补偿性突变多种多样,表明Glu-L212和Asp-L213对于荚膜红细菌中有效的光诱导电子或质子转移都不是必需的。位于QB结合口袋内或更远位点的第二位点突变可以补偿L212和L213处的突变以恢复光活性。获得一个带负电荷的残基(在L213位置、跨结合口袋的L225位置或口袋外的M43位置)或失去一个带正电荷的残基(在M231位置)足以恢复复合物的质子转移活性。抑制菌株中的质子传输途径原则上不可能与野生型相同。该途径明显的可变性表明反应中心可作为研究蛋白质介导的质子传输结构基础的模型系统。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验