Suppr超能文献

球形红细菌光合反应中心中静电相互作用对质子转移功能的增强作用:H亚基定点突变的初步结果

Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides: First results from site-directed mutation of the H subunit.

作者信息

Takahashi E, Wraight C A

机构信息

Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA.

出版信息

Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2640-5. doi: 10.1073/pnas.93.7.2640.

Abstract

The x-ray crystallographic structure of the photosynthetic reaction center (RC) has proven critical in understanding biological electron transfer processes. By contrast, understanding of intraprotein proton transfer is easily lost in the immense richness of the details. In the RC of Rhodobacter (Rb.) sphaeroides, the secondary quinone (QB) is surrounded by amino acid residues of the L subunit and some buried water molecules, with M- and H-subunit residues also close by. The effects of site-directed mutagenesis upon RC turnover and quinone function have implicated several L-subunit residues in proton delivery to QB, although some species differences exist. In wild-type Rb. sphaeroides, Glu L212 and Asp L213 represent an inner shell of residues of particular importance in proton transfer to QB. Asp L213 is crucial for delivery of the first proton, coupled to transfer of the second electron, while Glu L212, possibly together with Asp L213, is necessary for delivery of the second proton, after the second electron transfer. We report here the first study, by site-directed mutagenesis, of the role of the H subunit in QB function. Glu H173, one of a cluster of strongly interacting residues near QB, including Asp L213, was altered to Gln. In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant. However, the first electron transfer equilibrium, QA-QB <==> QAQB-, was decreased, which is opposite to the effect of the Asp L213 --> Asn mutation. These major disruptions of events coupled to proton delivery to QB were largely reversed by the addition of azide (N3-). The results support a major role for electrostatic interactions between charged groups in determining the protonation state of certain entities, thereby controlling the rate of the second electron transfer. It is suggested that the essential electrostatic effect may be to "potentiate" proton transfer activity by raising the pK of functional entities that actually transfer protons in a coupled fashion with the second electron transfer. Candidates include buried water (H3O+) and Ser L223 (serine-OH2+), which is very close to the O5 carbonyl of the quinone.

摘要

光合反应中心(RC)的X射线晶体结构已被证明对理解生物电子转移过程至关重要。相比之下,在丰富繁杂的细节中,对蛋白质内质子转移的理解却很容易被忽视。在球形红杆菌(Rb.)的反应中心中,次生醌(QB)被L亚基的氨基酸残基以及一些埋藏的水分子所包围,M亚基和H亚基的残基也在附近。定点诱变对反应中心周转和醌功能的影响表明,几个L亚基残基参与了向QB传递质子的过程,不过存在一些物种差异。在野生型球形红杆菌中,Glu L212和Asp L213代表了在向QB传递质子过程中特别重要的内层残基。Asp L213对于第一个质子的传递至关重要,它与第二个电子的转移相偶联,而Glu L212可能与Asp L213一起,在第二次电子转移后对第二个质子的传递是必需的。我们在此报告了第一项通过定点诱变研究H亚基在QB功能中作用的研究。Glu H173是QB附近一组强相互作用残基之一,包括Asp L213,被突变为Gln。在分离的突变反应中心中,导致半醌QB-形成的第一次电子转移动力学以及导致完全还原的醌醇形成的与质子相关的第二次电子转移动力学,都像之前在Asp L213→Asn突变体中观察到的那样大大延迟。然而,第一次电子转移平衡QA-QB⇌QAQB-降低了,这与Asp L213→Asn突变的效果相反。通过添加叠氮化物(N3-),这些与向QB传递质子相关事件的主要干扰在很大程度上得到了逆转。结果支持了带电基团之间的静电相互作用在确定某些实体的质子化状态从而控制第二次电子转移速率方面的主要作用。有人提出,基本的静电效应可能是通过提高与第二次电子转移以偶联方式实际转移质子的功能实体的pK来“增强”质子转移活性。候选者包括埋藏的水(H3O+)和Ser L223(丝氨酸-OH2+),它非常靠近醌的O5羰基。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验