Maróti P, Hanson D K, Baciou L, Schiffer M, Sebban P
Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif/Yvette, France.
Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5617-21. doi: 10.1073/pnas.91.12.5617.
Light-induced charge separation in the photosynthetic reaction center results in delivery of two electrons and two protons to the terminal quinone acceptor QB. In this paper, we have used flash-induced absorbance spectroscopy to study three strains that share identical amino acid sequences in the QB binding site, all of which lack the protonatable amino acids Glu-L212 and Asp-L213. These strains are the photosynthetically incompetent site-specific mutant Glu-L212/Asp-L213-->Ala-L212/Ala-L213 and two different photocompetent derivatives that carry both alanine substitutions and an intergenic suppressor mutation located far from QB (class 3 strain, Ala-Ala + Arg-M231-->Leu; class 4 strain, Ala-Ala + Asn-M43-->Asp). At pH 8 in the double mutant, we observe a concomitant decrease of nearly 4 orders of magnitude in the rate constants of second electron and proton transfer to QB compared to the wild type. Surprisingly, these rates are increased to about the same extent in both types of suppressor strains but remain > 2 orders of magnitude smaller than those of the wild type. In the double mutant, at pH 8, the loss of Asp-L213 and Glu-L212 leads to a substantial stabilization (> or = 60 meV) of the semiquinone energy level. Both types of compensatory mutations partially restore, to nearly the same level, the original free energy difference for electron transfer from primary quinone QA to QB. The pH dependence of the electron and proton transfer processes in the double-mutant and the suppressor strains suggests that when reaction centers of the double mutant are shifted to lower pH (1.5-2 units), they function like those of the suppressor strains at physiological pH. Our data suggest that the main effect of the compensatory mutations is to partially restore the negative electrostatic environment of QB and to increase an apparent "functional" pK of the system for efficient proton transfer to the active site. This emphasizes the role of the protein in tuning the electrostatic environment of its cofactors and highlights the possible long-range electrostatic effects.
光合反应中心中的光诱导电荷分离导致两个电子和两个质子传递给末端醌受体QB。在本文中,我们使用闪光诱导吸收光谱法研究了在QB结合位点具有相同氨基酸序列的三个菌株,它们均缺乏可质子化的氨基酸Glu-L212和Asp-L213。这些菌株是光合无能的位点特异性突变体Glu-L212/Asp-L213→Ala-L212/Ala-L213以及两种不同的光合活性衍生物,它们同时携带丙氨酸取代和远离QB的基因间抑制突变(3类菌株,Ala-Ala + Arg-M231→Leu;4类菌株,Ala-Ala + Asn-M43→Asp)。在双突变体中,pH为8时,与野生型相比,我们观察到第二个电子和质子转移到QB的速率常数同时下降了近4个数量级。令人惊讶的是,在两种抑制菌株中这些速率都增加到了大致相同的程度,但仍比野生型小>2个数量级。在双突变体中,pH为8时,Asp-L213和Glu-L212的缺失导致半醌能级大幅稳定(≥60 meV)。两种补偿性突变都将从初级醌QA到QB的电子转移的原始自由能差部分恢复到几乎相同的水平。双突变体和抑制菌株中电子和质子转移过程的pH依赖性表明,当双突变体的反应中心转移到较低pH(1.5 - 2个单位)时,它们在生理pH下的功能类似于抑制菌株。我们的数据表明,补偿性突变的主要作用是部分恢复QB的负静电环境,并增加系统用于向活性位点有效质子转移的表观“功能”pK。这强调了蛋白质在调节其辅因子静电环境中的作用,并突出了可能的长程静电效应。