Müller G, Bandlow W
Hoechst Aktiengesellschaft Frankfurt am Main, Federal Republic of Germany.
Arch Biochem Biophys. 1994 Feb 1;308(2):504-14. doi: 10.1006/abbi.1994.1071.
Two new cAMP-binding proteins have been discovered recently in Saccharomyces cerevisiae. They are genetically distinct from the regulatory subunit of cytoplasmic cAMP-dependent protein kinase A and are distinguished from the latter, in addition, by their anchorage through phosphatidylinositol-containing lipid and glycolipid structures to mitochondrial and plasma membranes, respectively (Müller and Bandlow, 1989 Biochemistry 28, 9957-9967, 1991, Biochemistry 30, 10181-10190). A nutritional upshift induces the cleavage of the anchor by a phospholipase C (Müller and Bandlow, 1993, J. Cell Biol. 122, 225-236). To test the idea that anchorage by (glycosyl)phosphatidyl-inositol influences cAMP-binding and has a regulatory function, we analyzed ligand binding to the two purified cAMP receptors (46,000 and 54,000 Da) in comparison to the regulatory subunit of the cytoplasmic protein kinase A (52,000 Da). We find that lipolytic cleavage of the two membrane anchors by phosphatidylinositol-specific phospholipases C and D results in significantly higher association and lower dissociation rates of cAMP, thus leading to a dramatic increase in ligand affinity of the two cAMP receptors. Use of cAMP analogues identifies two different cAMP-binding centers in each membrane-embedded protein, one of which is noticeably affected by the cleavage of the anchor. In both phosphatidylinositol-anchored cAMP receptor proteins a single Trp residue in one of the binding centers is photoaffinity-labeled by 8-N3-cAMP, whereas two amino acids, Trp and Tyr, are modified after lipolytic removal of the anchor. The differences in the labeling patterns are interpreted as to result from a conformational rearrangement induced by the cleavage of the anchor. Together with the increased affinity to the ligand these changes document alterations of the properties and folding structure of lipid-anchored proteins following cleavage of the PI-containing anchor by specific phospholipases and provide the first molecular evidence for a regulatory role of the anchorage by a lipid structure. The cytoplasmic regulatory subunit of yeast protein kinase A is not photolabeled to a significant extent under any condition.
最近在酿酒酵母中发现了两种新的环磷酸腺苷(cAMP)结合蛋白。它们在基因上与细胞质cAMP依赖性蛋白激酶A的调节亚基不同,此外,它们分别通过含磷脂酰肌醇的脂质和糖脂结构锚定在线粒体膜和质膜上,从而与后者区分开来(Müller和Bandlow,1989年,《生物化学》28卷,9957 - 9967页;1991年,《生物化学》30卷,10181 - 10190页)。营养物质的上调会诱导磷脂酶C切割锚定结构(Müller和Bandlow,1993年,《细胞生物学杂志》122卷,225 - 236页)。为了验证(糖基)磷脂酰肌醇锚定影响cAMP结合并具有调节功能这一观点,我们分析了两种纯化的cAMP受体(46,000和54,000道尔顿)与细胞质蛋白激酶A的调节亚基(52,000道尔顿)的配体结合情况。我们发现,磷脂酰肌醇特异性磷脂酶C和D对两种膜锚定结构的脂解切割导致cAMP的结合速率显著提高,解离速率降低,从而使两种cAMP受体的配体亲和力大幅增加。使用cAMP类似物可在每种膜嵌入蛋白中鉴定出两个不同的cAMP结合中心,其中一个明显受到锚定结构切割的影响。在两种磷脂酰肌醇锚定的cAMP受体蛋白中,一个结合中心的单个色氨酸残基被8 - N3 - cAMP光亲和标记,而在脂解去除锚定结构后,色氨酸和酪氨酸这两个氨基酸会被修饰。标记模式的差异被解释为是由锚定结构切割引起的构象重排导致的。这些变化连同对配体亲和力的增加,证明了含磷脂酰肌醇的锚定结构被特定磷脂酶切割后,脂质锚定蛋白的性质和折叠结构发生了改变,并为脂质结构锚定的调节作用提供了首个分子证据。在任何条件下,酵母蛋白激酶A的细胞质调节亚基都不会被显著光标记。