Suppr超能文献

通过整合外部研究中粗化的事件发生时间结局来提高生存数据分析的估计效率。

Improving estimation efficiency for survival data analysis by integrating a coarsened time-to-event outcome from an external study.

作者信息

Deng Daxuan, Zhang Lijun, Feng Hao, Chinchilli Vernon M, Chen Chixiang, Wang Ming

机构信息

Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, United States.

Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States.

出版信息

Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujae168.

Abstract

In the era of big data, increasing availability of data makes combining different data sources to obtain more accurate estimations a popular topic. However, the development of data integration is often hindered by the heterogeneity in data forms across studies. In this paper, we focus on a case in survival analysis where we have primary study data with a continuous time-to-event outcome and complete covariate measurements, while the data from an external study contain an outcome observed at regular intervals, and only a subset of covariates is measured. To incorporate external information while accounting for the different data forms, we posit working models and obtain informative weights by empirical likelihood, which will be used to construct a weighted estimator in the main analysis. We have established the theory demonstrating that the new estimator has higher estimation efficiency compared to the conventional ones, and this advantage is robust to working model misspecification, as confirmed in our simulation studies. To assess its utility, we apply our method to accommodate data from the National Alzheimer's Coordinating Center to improve the analysis of the Alzheimer's Disease Neuroimaging Initiative Phase 1 study.

摘要

在大数据时代,数据可用性的不断提高使得整合不同数据源以获得更准确的估计成为一个热门话题。然而,数据整合的发展常常受到各研究数据形式异质性的阻碍。在本文中,我们聚焦于生存分析中的一个案例,我们拥有主要研究数据,其事件发生时间结果是连续的且协变量测量完整,而外部研究的数据包含定期观测的结果,并且仅测量了一部分协变量。为了在考虑不同数据形式的同时纳入外部信息,我们设定工作模型并通过经验似然获得信息权重,这些权重将用于在主要分析中构建加权估计量。我们已经建立了理论,证明新的估计量相比传统估计量具有更高的估计效率,并且正如我们的模拟研究证实的那样,这一优势对于工作模型的误设具有稳健性。为了评估其效用,我们应用我们的方法整合来自国家阿尔茨海默病协调中心的数据,以改进阿尔茨海默病神经影像学计划第一阶段研究的分析。

相似文献

4
Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.非ignorable协变量缺失数据问题中的经验似然
Int J Biostat. 2017 Apr 20;13(1):/j/ijb.2017.13.issue-1/ijb-2016-0053/ijb-2016-0053.xml. doi: 10.1515/ijb-2016-0053.
10
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

本文引用的文献

7
Biomarkers in dementia: clinical utility and new directions.痴呆症中的生物标志物:临床应用及新方向。
J Neurol Neurosurg Psychiatry. 2014 Dec;85(12):1426-34. doi: 10.1136/jnnp-2014-307662. Epub 2014 Sep 26.
10
Risk factors for dementia.痴呆的风险因素。
J Formos Med Assoc. 2009 Oct;108(10):754-64. doi: 10.1016/S0929-6646(09)60402-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验