Rosendahl G, Douthwaite S
Department of Molecular Biology, Odense University, Denmark.
Nucleic Acids Res. 1994 Feb 11;22(3):357-63. doi: 10.1093/nar/22.3.357.
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.
抗生素硫链丝菌素和小球菌素与23S rRNA结构域II中的GTPase区域结合,并抑制核糖体A位点相关反应。当与核糖体结合时,这些抗生素会改变核苷酸1067A和1095A对化学试剂的可及性。在体内表达了在位置1067或1095处具有单突变的质粒编码的大肠杆菌23S rRNA。突变核糖体在蛋白质合成中具有功能,尽管那些发生颠换突变的核糖体功能效率较低。在野生型和突变核糖体在同一反应中竞争药物分子的条件下结合抗生素;通过等位基因特异性足迹分析结合情况。1067处的颠换突变使硫链丝菌素的结合减少了1000倍以上。1067G替换使硫链丝菌素的结合略有减少。1095处的变化轻微但显著降低了核糖体对硫链丝菌素的亲和力,同样G突变的影响最小。所有1067和1095突变使小球菌素与核糖体的结合比硫链丝菌素减少的程度大得多。将这些结果外推到生长中的细胞,核苷酸1067A的突变赋予对小球菌素和硫链丝菌素的抗性,而1095A处的替换赋予对小球菌素的抗性,并增加对硫链丝菌素的耐受性。这些数据支持一个rRNA三级结构模型,其中1067A和1095A紧密相邻,并且是药物结合位点的关键组成部分。没有一个突变改变rRNA的高级结构或r蛋白的结合。因此,我们得出结论,硫链丝菌素和小球菌素直接与1067A和1095A相互作用。