Suppr超能文献

哺乳动物线粒体翻译延伸由 mtEFG1 催化的结构见解。

Structural insights into mammalian mitochondrial translation elongation catalyzed by mtEFG1.

机构信息

Department of Biology, Institute of Molecular Biology and Biophysics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.

出版信息

EMBO J. 2020 Aug 3;39(15):e104820. doi: 10.15252/embj.2020104820. Epub 2020 Jun 30.

Abstract

Mitochondria are eukaryotic organelles of bacterial origin where respiration takes place to produce cellular chemical energy. These reactions are catalyzed by the respiratory chain complexes located in the inner mitochondrial membrane. Notably, key components of the respiratory chain complexes are encoded on the mitochondrial chromosome and their expression relies on a dedicated mitochondrial translation machinery. Defects in the mitochondrial gene expression machinery lead to a variety of diseases in humans mostly affecting tissues with high energy demand such as the nervous system, the heart, or the muscles. The mitochondrial translation system has substantially diverged from its bacterial ancestor, including alterations in the mitoribosomal architecture, multiple changes to the set of translation factors and striking reductions in otherwise conserved tRNA elements. Although a number of structures of mitochondrial ribosomes from different species have been determined, our mechanistic understanding of the mitochondrial translation cycle remains largely unexplored. Here, we present two cryo-EM reconstructions of human mitochondrial elongation factor G1 bound to the mammalian mitochondrial ribosome at two different steps of the tRNA translocation reaction during translation elongation. Our structures explain the mechanism of tRNA and mRNA translocation on the mitoribosome, the regulation of mtEFG1 activity by the ribosomal GTPase-associated center, and the basis of decreased susceptibility of mtEFG1 to the commonly used antibiotic fusidic acid.

摘要

线粒体是具有细菌起源的真核细胞器,在这里进行呼吸作用以产生细胞化学能量。这些反应由位于线粒体内膜的呼吸链复合物催化。值得注意的是,呼吸链复合物的关键成分编码在线粒体染色体上,其表达依赖于专门的线粒体翻译机制。线粒体基因表达机制的缺陷会导致人类的多种疾病,这些疾病主要影响高能量需求的组织,如神经系统、心脏或肌肉。线粒体翻译系统与细菌祖先有很大的差异,包括线粒体核糖体结构的改变、一组翻译因子的多次改变以及其他保守 tRNA 元件的明显减少。尽管已经确定了来自不同物种的线粒体核糖体的许多结构,但我们对线粒体翻译循环的机制理解在很大程度上仍未得到探索。在这里,我们展示了与人线粒体延伸因子 G1 结合的哺乳动物线粒体核糖体的两个 cryo-EM 重建,分别处于翻译延伸过程中转录物易位反应的两个不同步骤。我们的结构解释了 tRNA 和 mRNA 在 mitoribosome 上的易位机制、核糖体 GTPase 相关中心对 mtEFG1 活性的调节,以及 mtEFG1 对常用抗生素夫西地酸的敏感性降低的基础。

相似文献

6
Structural basis of mitochondrial translation.线粒体翻译的结构基础。
Elife. 2020 Aug 19;9:e58362. doi: 10.7554/eLife.58362.
7
Structure and Function of the Mitochondrial Ribosome.线粒体核糖体的结构与功能。
Annu Rev Biochem. 2016 Jun 2;85:103-32. doi: 10.1146/annurev-biochem-060815-014343. Epub 2016 Mar 24.

引用本文的文献

1
Emerging mechanisms of human mitochondrial translation regulation.人类线粒体翻译调控的新机制。
Trends Biochem Sci. 2025 Jul;50(7):566-584. doi: 10.1016/j.tibs.2025.03.007. Epub 2025 Apr 11.
7
Translation in Mitochondrial Ribosomes.线粒体核糖体的翻译。
Methods Mol Biol. 2023;2661:53-72. doi: 10.1007/978-1-0716-3171-3_4.
8
Evolution: Mitochondrial Ribosomes Across Species.进化:跨物种的线粒体核糖体。
Methods Mol Biol. 2023;2661:7-21. doi: 10.1007/978-1-0716-3171-3_2.

本文引用的文献

4
Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state.mRNA 和 tRNA 自发的核糖体易位进入嵌合杂交状态。
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7813-7818. doi: 10.1073/pnas.1901310116. Epub 2019 Apr 1.
7
Real-space refinement in PHENIX for cryo-EM and crystallography.真空间 refinement 在 PHENIX 用于 cryo-EM 和结晶学。
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544. doi: 10.1107/S2059798318006551. Epub 2018 May 30.
8
Translation in Prokaryotes.原核生物中的翻译。
Cold Spring Harb Perspect Biol. 2018 Sep 4;10(9):a032664. doi: 10.1101/cshperspect.a032664.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验