Distel D L, Cavanaugh C M
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
J Bacteriol. 1994 Apr;176(7):1932-8. doi: 10.1128/jb.176.7.1932-1938.1994.
The discovery of bacterium-bivalve symbioses capable of utilizing methane as a carbon and energy source indicates that the endosymbionts of hydrothermal vent and cold seep bivalves are not restricted to sulfur-oxidizing chemoautotrophic bacteria but also include methanotrophic bacteria. The phylogenetic origin of methanotrophic endosymbionts and their relationship to known symbiotic and free-living bacteria, however, have remained unexplored. In situ localization and phylogenetic analysis of a symbiont 16S rRNA gene cloned from the gills of a recently described deep-sea mussel species demonstrate that this symbiont represents a new taxon which is closely related to free-living, cultivable Type I methanotrophic bacteria. This symbiont is distinct from known chemoautotrophic symbionts. Thus, despite compelling similarities between the symbioses, chemoautotrophic and methanotrophic symbionts of marine bivalves have independent phylogenetic origins.
能够利用甲烷作为碳源和能源的细菌 - 双壳类共生关系的发现表明,热液喷口和冷渗双壳类动物的内共生体并不局限于硫氧化化学自养细菌,还包括甲烷营养细菌。然而,甲烷营养内共生体的系统发育起源及其与已知共生和自由生活细菌的关系仍未得到探索。从最近描述的深海贻贝物种鳃中克隆的共生体16S rRNA基因的原位定位和系统发育分析表明,这种共生体代表了一个与自由生活、可培养的I型甲烷营养细菌密切相关的新分类单元。这种共生体与已知的化学自养共生体不同。因此,尽管共生关系之间存在令人信服的相似性,但海洋双壳类动物的化学自养和甲烷营养共生体具有独立的系统发育起源。