Suppr超能文献

持续性或复发性支气管源性癌:用正电子发射断层显像(PET)和2-氟-18-脱氧-D-葡萄糖进行检测

Persistent or recurrent bronchogenic carcinoma: detection with PET and 2-[F-18]-2-deoxy-D-glucose.

作者信息

Patz E F, Lowe V J, Hoffman J M, Paine S S, Harris L K, Goodman P C

机构信息

Department of Radiology, Duke University Medical Center, Durham, NC 27710.

出版信息

Radiology. 1994 May;191(2):379-82. doi: 10.1148/radiology.191.2.8153309.

Abstract

PURPOSE

To assess positron emission tomography (PET) with 2-[fluorine-18]-2-deoxy-D-glucose (FDG) in the differentiation of recurrent bronchogenic carcinoma from fibrosis after therapy.

MATERIALS AND METHODS

Any patient treated for bronchogenic carcinoma who had a residual chest radiographic abnormality was eligible. Forty-three patients (mean age, 63.5 years) participated. Chest radiographs and thoracic computed tomographic scans helped localize the abnormality prior to PET. Semiquantitative analysis was performed on FDG PET images with calculated standardized uptake ratios (SURs). Sensitivity, specificity, and confidence intervals for recurrent disease were determined.

RESULTS

Thirty-five patients had recurrent or persistent tumor (median SUR, 7.6; range, 1.9-18.7). Eight patients had fibrosis but no evidence of disease (SUR, 1.6; range, 0.6-2.4). The sensitivity for detecting recurrent tumor (SUR > 2.5) was 97.1%, and specificity was 100%. The SUR for recurrent tumor was statistically significantly higher than for fibrosis (P = .0001).

CONCLUSION

FDG PET accurately helps differentiate recurrent bronchogenic carcinoma from fibrosis.

摘要

目的

评估采用2-[氟-18]-2-脱氧-D-葡萄糖(FDG)的正电子发射断层扫描(PET)在鉴别复发性支气管源性癌与治疗后纤维化方面的作用。

材料与方法

任何接受过支气管源性癌治疗且胸部X线片有残留异常的患者均符合条件。43例患者(平均年龄63.5岁)参与研究。在进行PET检查前,胸部X线片和胸部计算机断层扫描有助于确定异常部位。对FDG PET图像进行半定量分析,计算标准化摄取值(SURs)。确定复发性疾病的敏感性、特异性和置信区间。

结果

35例患者有复发或持续性肿瘤(SUR中位数为7.6;范围为1.9 - 18.7)。8例患者有纤维化但无疾病证据(SUR为1.6;范围为0.6 - 2.4)。检测复发性肿瘤(SUR > 2.5)的敏感性为97.1%,特异性为100%。复发性肿瘤的SUR在统计学上显著高于纤维化(P = .0001)。

结论

FDG PET能准确地帮助鉴别复发性支气管源性癌与纤维化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验