Suppr超能文献

Characterization of the essential yeast gene encoding N-acetylglucosamine-phosphate mutase.

作者信息

Hofmann M, Boles E, Zimmermann F K

机构信息

Institut für Mikrobiologie, Technische Hochschule Darmstadt, Germany.

出版信息

Eur J Biochem. 1994 Apr 15;221(2):741-7. doi: 10.1111/j.1432-1033.1994.tb18787.x.

Abstract

A previously cloned gene of Saccharomyces cerevisiae, which complements the growth defect of a phosphoglucomutase (pgm1 delta/pgm2 delta) double deletion mutant on a pure galactose medium [Boles, E., Liebetrau, W., Hofmann, M. & Zimmermann, F. K. (1994) Eur. J. Biochem. 220, 83-96], was identified as the structural gene encoding N-acetylglucosamine-phosphate mutase. The complete nucleotide sequence of the gene, AGM1, and surrounding regions were determined. AGM1 codes for a predicted 62-kDa protein with 557 amino acids and is located on chromosome V adjacent to the known gene PRB1 encoding protease B. No extended nucleotide or amino acid sequence similarities could be found in the databases, except for a small region of amino acids with high similarity to the active-site consensus sequence of hexosephosphate mutases. Three putative pheromone-responsive elements have been identified in the upstream region of the AGM1 gene. The gene is essential for cell viability. An agm1 deletion mutant progresses through only approximately five cell cycles to form a 'string' of undivided cells with an abnormal cell morphology resembling glucosamine auxotrophic mutants. Expression of the AGM1 gene on a multi-copy plasmid led to a significantly increased N-acetylglucosamine-phosphate mutase activity. Unlike over-expression of the AGM1 gene in a pgm1/pgm2 double deletion mutant which could restore phosphoglucomutase activity, over-expression of the PGM2 gene encoding the major isoenzyme of phosphoglucomutase did not increase N-acetylglucosamine-phosphate-mutase activity and did not restore growth of agm1 deletion mutant cells. Our observations indicate that the different hexosephosphate mutases of S. cerevisiae have partially overlapping substrate specificities but, nevertheless, distinct physiological functions.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验