Sychra J J, Bandettini P A, Bhattacharya N, Lin Q
University of Illinois Hospital, Department of Radiology, Chicago 60612.
Med Phys. 1994 Feb;21(2):193-201. doi: 10.1118/1.597374.
The principal component (PC) approach offers compressions of an image sequence into fewer images and noise suppressing filters. Multiple MR images of the same tomographic slice obtained with different acquisition parameters (i.e., with different TR, TE, and flip angles), time sequences of images in nuclear medicine, and cardiac ultrasound image sequences are examples of such input image sets. In this paper noise relationships of original and linearly transformed image sequences in general, and specifically of original, PC, and PC-filtered images are discussed. As the spinoff, it introduces locally weighted PC transforms and filters, nonlinear PC's, and a single-image based filter for suppression of noise. Examples illustrate increased perceptibility of anatomical/functional structures in PC images and PC-filtered images, including extraction of physiological functional information by PC loading curves. Generally, the more correlated the original images are, the more effective is the PC approach.
主成分(PC)方法可将图像序列压缩为数量更少的图像,并提供噪声抑制滤波器。使用不同采集参数(即不同的TR、TE和翻转角)获得的同一断层切片的多个磁共振图像、核医学中的图像时间序列以及心脏超声图像序列都是此类输入图像集的示例。本文讨论了一般情况下原始图像序列和线性变换图像序列的噪声关系,特别是原始图像、主成分图像和主成分滤波图像的噪声关系。作为附带成果,本文介绍了局部加权主成分变换和滤波器、非线性主成分以及一种基于单幅图像的噪声抑制滤波器。实例表明,主成分图像和主成分滤波图像中解剖/功能结构的可感知性增强,包括通过主成分加载曲线提取生理功能信息。一般来说,原始图像之间的相关性越强,主成分方法就越有效。