Suppr超能文献

通过子空间变换生成的合成图像。一、主成分图像及相关滤波器。

Synthetic images by subspace transforms. I. Principal components images and related filters.

作者信息

Sychra J J, Bandettini P A, Bhattacharya N, Lin Q

机构信息

University of Illinois Hospital, Department of Radiology, Chicago 60612.

出版信息

Med Phys. 1994 Feb;21(2):193-201. doi: 10.1118/1.597374.

Abstract

The principal component (PC) approach offers compressions of an image sequence into fewer images and noise suppressing filters. Multiple MR images of the same tomographic slice obtained with different acquisition parameters (i.e., with different TR, TE, and flip angles), time sequences of images in nuclear medicine, and cardiac ultrasound image sequences are examples of such input image sets. In this paper noise relationships of original and linearly transformed image sequences in general, and specifically of original, PC, and PC-filtered images are discussed. As the spinoff, it introduces locally weighted PC transforms and filters, nonlinear PC's, and a single-image based filter for suppression of noise. Examples illustrate increased perceptibility of anatomical/functional structures in PC images and PC-filtered images, including extraction of physiological functional information by PC loading curves. Generally, the more correlated the original images are, the more effective is the PC approach.

摘要

主成分(PC)方法可将图像序列压缩为数量更少的图像,并提供噪声抑制滤波器。使用不同采集参数(即不同的TR、TE和翻转角)获得的同一断层切片的多个磁共振图像、核医学中的图像时间序列以及心脏超声图像序列都是此类输入图像集的示例。本文讨论了一般情况下原始图像序列和线性变换图像序列的噪声关系,特别是原始图像、主成分图像和主成分滤波图像的噪声关系。作为附带成果,本文介绍了局部加权主成分变换和滤波器、非线性主成分以及一种基于单幅图像的噪声抑制滤波器。实例表明,主成分图像和主成分滤波图像中解剖/功能结构的可感知性增强,包括通过主成分加载曲线提取生理功能信息。一般来说,原始图像之间的相关性越强,主成分方法就越有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验