Suppr超能文献

多光谱磁共振图像分析

Multispectral magnetic resonance image analysis.

作者信息

Vannier M W, Butterfield R L, Rickman D L, Jordan D M, Murphy W A, Biondetti P R

机构信息

Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.

出版信息

Crit Rev Biomed Eng. 1987;15(2):117-44.

PMID:3691157
Abstract

Multiecho magnetic resonance (MR) scanning produces tomographic images with approximately equal morphologic information but varying gray scales at the same anatomic level. Multispectral image classification techniques, originally developed for satellite imaging, have recently been applied to MR tissue characterization. Statistical assessment of multispectral tissue classification techniques has been used to select the most promising of several alternative methods. MR examinations of the head and body, obtained with a 0.35, 0.5, or 1.5T imager, comprised data sets with at least two pulse sequences yielding three images at each anatomical level: (1) TR = 0.3 sec, TE = 30 msec, (2) TR = 1.5, TE = 30, (3) TR = 1.5, TE = 120. Normal and pathological images have been analyzed using multispectral analysis and image classification. MR image data are first subjected to radiometric and geometric corrections to reduce error resulting from (1) instrumental variations in data acquisition, (2) image noise, and (3) misregistration. Training regions of interest (ROI) are outlined in areas of normal (gray and white matter, CSF) and pathological tissue. Statistics are extracted from these ROIs and classification maps generated using table lookup, minimum distance to means, maximum likelihood, and cluster analysis. These synthetic maps are then compared pixel by pixel with manually prepared classification maps of the same MR images. Using these methods, the authors have found that: (1) both supervised and unsupervised classification techniques yielded theme maps (class maps) which demonstrated tissue characteristic signatures and (2) tissue classification errors found in computer-generated theme maps were due to subtle gray scale changes present in the original MR data sets arising from radiometric inhomogeneity and spatial nonuniformity.

摘要

多回波磁共振(MR)扫描可产生断层图像,在相同解剖层面上具有大致相同的形态学信息,但灰度不同。最初为卫星成像开发的多光谱图像分类技术,最近已应用于MR组织特征分析。多光谱组织分类技术的统计评估已被用于从几种替代方法中选择最有前景的方法。使用0.35、0.5或1.5T成像仪获得的头部和身体的MR检查,包括至少两个脉冲序列的数据集,在每个解剖层面产生三张图像:(1)TR = 0.3秒,TE = 30毫秒,(2)TR = 1.5,TE = 30,(3)TR = 1.5,TE = 120。已使用多光谱分析和图像分类对正常和病理图像进行了分析。MR图像数据首先进行辐射度和几何校正,以减少由以下原因导致的误差:(1)数据采集过程中的仪器变化,(2)图像噪声,以及(3)配准错误。在正常(灰质和白质、脑脊液)和病理组织区域勾勒出感兴趣的训练区域(ROI)。从这些ROI中提取统计数据,并使用查表、最小距离均值、最大似然和聚类分析生成分类图。然后将这些合成图与相同MR图像的手动制备分类图逐像素进行比较。使用这些方法,作者发现:(1)监督和非监督分类技术都产生了主题图(类图),这些图展示了组织特征特征,并且(2)在计算机生成的主题图中发现的组织分类错误是由于原始MR数据集中存在的细微灰度变化,这些变化是由辐射度不均匀和空间不均匀性引起的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验