Bair W, Koch C, Newsome W, Britten K
Computation and Neural Systems Program, California Institute of Technology, Pasadena 91125.
J Neurosci. 1994 May;14(5 Pt 1):2870-92. doi: 10.1523/JNEUROSCI.14-05-02870.1994.
It is widely held that visual cortical neurons encode information primarily in their mean firing rates. Some proposals, however, emphasize the information potentially available in the temporal structure of spike trains (Optican and Richmond, 1987; Bialek et al., 1991), in particular with respect to stimulus-related synchronized oscillations in the 30-70 Hz range (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and Singer, 1992) as well as via bursting cells (Cattaneo et al., 1981a; Bonds, 1992). We investigate the temporal fine structure of spike trains recorded in extrastriate area MT of the trained macaque monkey, a region that plays a major role in processing motion information. The data were recorded while the monkey performed a near-threshold direction discrimination task so that both physiological and psychophysical data could be obtained on the same set of trials (Britten et al., 1992). We identify bursting cells and quantify their properties, in particular in relation to the behavior of the animal. We compute the power spectrum and the distribution of interspike intervals (ISIs) associated with individual spike trains from 212 cells, averaging these quantities across similar trials. (1) About 33% of the cells have a relatively flat power spectrum with a dip at low temporal frequencies. We analytically derive the power spectrum of a Poisson process with refractory period and show that it matches the observed spectrum of these cells. (2) About 62% of the cells have a peak in the 20-60 Hz frequency band. In about 10% of all cells, this peak is at least twice the height of its base. The presence of such a peak strongly correlates with a tendency of the cell to respond in bursts, that is, two to four spikes within 2-8 msec. For 93% of cells, the shape of the power spectrum did not change dramatically with stimulus conditions. (3) Both the ISI distribution and the power spectrum of the vast majority of bursting cells are compatible with the notion that these cells fire Poisson-distributed bursts, with a burst-related refractory period. Thus, for our stimulus conditions, no explicitly oscillating neuronal process is required to yield a peak in the power spectrum. (4) We found no statistically significant relationship between the peak in the power spectrum and psychophysical measures of the monkeys' performance on the direction discrimination task.(ABSTRACT TRUNCATED AT 400 WORDS)
人们普遍认为,视觉皮层神经元主要通过其平均放电率来编码信息。然而,一些观点强调了脉冲序列的时间结构中潜在的信息(奥普蒂坎和里士满,1987年;比亚莱克等人,1991年),特别是关于30 - 70赫兹范围内与刺激相关的同步振荡(埃克霍恩等人,1988年;格雷等人,1989年;克赖特和辛格,1992年)以及通过爆发性细胞(卡塔内奥等人,1981a;邦兹,1992年)。我们研究了在经过训练的猕猴的纹外区域MT记录的脉冲序列的时间精细结构,该区域在处理运动信息中起主要作用。数据是在猴子执行接近阈值的方向辨别任务时记录的,以便在同一组试验中获得生理和心理物理学数据(布里顿等人,1992年)。我们识别出爆发性细胞并量化它们的特性,特别是与动物行为相关的特性。我们计算了与212个细胞的单个脉冲序列相关的功率谱和脉冲间隔(ISI)分布,并在相似的试验中对这些量进行平均。(1)约33%的细胞具有相对平坦的功率谱,在低时间频率处有一个凹陷。我们解析推导了具有不应期的泊松过程的功率谱,并表明它与这些细胞观察到的谱相匹配。(2)约62%的细胞在20 - 60赫兹频段有一个峰值。在所有细胞中约10%,这个峰值至少是其基部高度的两倍。这样一个峰值的存在与细胞爆发性反应的倾向密切相关,即在2 - 8毫秒内有两到四个脉冲。对于93%的细胞,功率谱的形状在不同刺激条件下没有显著变化。(3)绝大多数爆发性细胞的ISI分布和功率谱都与这些细胞发放泊松分布的爆发且具有与爆发相关的不应期这一概念相符。因此,对于我们的刺激条件,不需要明确的振荡神经元过程就能在功率谱中产生一个峰值。(4)我们发现在功率谱中的峰值与猴子在方向辨别任务中的心理物理学表现之间没有统计学上的显著关系。(摘要截短至400字)