Suppr超能文献

基于生理学的药代动力学与癌症风险评估。

Physiologically based pharmacokinetics and cancer risk assessment.

作者信息

Andersen M E, Krishnan K

机构信息

Health Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.

出版信息

Environ Health Perspect. 1994 Jan;102 Suppl 1(Suppl 1):103-8. doi: 10.1289/ehp.94102s1103.

Abstract

Physiologically based pharmacokinetic (PBPK) modeling involves mathematically describing the complex interplay of the critical physicochemical and biological determinants involved in the disposition of chemicals. In this approach, the body is divided into a number of biologically relevant tissue compartments, arranged in an anatomically accurate manner, and defined with appropriate physiological characteristics. The extrapolation of pharmacokinetic behavior of chemicals from high dose to low dose for various exposure routes and species is possible with this approach because these models are developed by integrating quantitative information on the critical determinants of chemical disposition under a biological modeling framework. The principal application of PBPK models is in the prediction of tissue dosimetry of toxic moiety (e.g., parent chemical, reactive metabolite, macromolecular adduct) of a chemical. Such an application has been demonstrated with dichloromethane, a liver and lung carcinogen in the B6C3F1 mouse. The PBPK model-based risk assessment approach estimated a cancer risk to people of 3.7 x 10(-8) for a lifetime inhalation exposure of 1 micrograms/m3, which is lower by more than two orders of magnitude than that calculated by the U.S. Environmental Protection Agency using the linearized multistage model (for low-dose extrapolation) and body surface correction factor (for interspecies scaling). The capability of predicting the target tissue exposure to toxic moiety in people with PBPK models should help reduce the uncertainty associated with the extrapolation procedures adopted in conventional dose-response assessment.

摘要

基于生理学的药代动力学(PBPK)建模涉及以数学方式描述化学物质处置过程中关键物理化学和生物学决定因素的复杂相互作用。在这种方法中,身体被划分为多个具有生物学相关性的组织隔室,以解剖学上准确的方式排列,并具有适当的生理特征进行定义。由于这些模型是通过在生物学建模框架下整合有关化学物质处置关键决定因素的定量信息而开发的,因此可以用这种方法将化学物质在各种暴露途径和物种下从高剂量到低剂量的药代动力学行为进行外推。PBPK模型的主要应用在于预测化学物质的有毒部分(例如母体化学物质、反应性代谢物、大分子加合物)的组织剂量学。二氯甲烷(B6C3F1小鼠中的肝脏和肺部致癌物)的这种应用已得到证实。基于PBPK模型的风险评估方法估计,对于1微克/立方米的终生吸入暴露,人类患癌风险为3.7×10⁻⁸,这比美国环境保护局使用线性化多阶段模型(用于低剂量外推)和体表校正因子(用于种间缩放)计算出的风险低两个多数量级。使用PBPK模型预测人体目标组织对有毒部分的暴露能力应有助于降低传统剂量反应评估中采用的外推程序相关的不确定性。

相似文献

1
Physiologically based pharmacokinetics and cancer risk assessment.基于生理学的药代动力学与癌症风险评估。
Environ Health Perspect. 1994 Jan;102 Suppl 1(Suppl 1):103-8. doi: 10.1289/ehp.94102s1103.
5
PBPK models in risk assessment--A focus on chloroprene.风险评估中的生理药代动力学(PBPK)模型——以氯丁二烯为重点
Chem Biol Interact. 2007 Mar 20;166(1-3):352-9. doi: 10.1016/j.cbi.2007.01.016. Epub 2007 Feb 8.

本文引用的文献

2
Mutation and cancer: a model for human carcinogenesis.突变与癌症:人类致癌作用的一种模型
J Natl Cancer Inst. 1981 Jun;66(6):1037-52. doi: 10.1093/jnci/66.6.1037.
5
Metabolism of inhaled dihalomethanes in vivo: differentiation of kinetic constants for two independent pathways.
Toxicol Appl Pharmacol. 1986 Feb;82(2):211-23. doi: 10.1016/0041-008x(86)90196-1.
7
Biologically motivated cancer risk models.基于生物学的癌症风险模型。
Risk Anal. 1987 Mar;7(1):109-19. doi: 10.1111/j.1539-6924.1987.tb00974.x.
10
Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues.
Toxicol Appl Pharmacol. 1989 Mar 15;98(1):87-99. doi: 10.1016/0041-008x(89)90137-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验