Suppr超能文献

一种在II期临床评估之前筛选癌症治疗方法的贝叶斯策略。

A Bayesian strategy for screening cancer treatments prior to phase II clinical evaluation.

作者信息

Thall P F, Estey E H

机构信息

Department of Biomathematics, M.D. Anderson Cancer Center, University of Texas, Houston 77030.

出版信息

Stat Med. 1993 Jul 15;12(13):1197-211. doi: 10.1002/sim.4780121303.

Abstract

We address the problem of selecting a treatment for phase II evaluation when several candidate treatments emerging from phase I testing are available. A pre-phase II Bayesian selection design which randomizes patients among treatments is proposed. The patient group in the trial has prognosis more favourable than that of phase I patients but less favourable than the target group of the subsequent phase II trial. The patient response rate distribution in each treatment arm is continually updated during the trial for comparison with early termination cutoffs, and the best final treatment must satisfy a minimal posterior efficacy criterion. The primary aim is to replace the usual informal treatment selection process with a fair comparison formally based on a combination of prior opinion and clinical data.

摘要

当有几种来自I期试验的候选治疗方法可供选择时,我们着手解决选择用于II期评估的治疗方法这一问题。我们提出了一种II期前的贝叶斯选择设计,该设计在不同治疗方法之间对患者进行随机分组。试验中的患者组预后比I期患者更有利,但比后续II期试验的目标组更不利。在试验过程中,每个治疗组的患者反应率分布会不断更新,以便与早期终止临界值进行比较,并且最佳的最终治疗方法必须满足最小的后验疗效标准。主要目的是用一种基于先验观点和临床数据相结合的正式公平比较,来取代通常的非正式治疗选择过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验